| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fracbas.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | fracbas.2 | ⊢ 𝐸  =  ( RLReg ‘ 𝑅 ) | 
						
							| 3 |  | fracbas.3 | ⊢ 𝐹  =  (  Frac  ‘ 𝑅 ) | 
						
							| 4 |  | fracbas.4 | ⊢  ∼   =  ( 𝑅  ~RL  𝐸 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐵  ×  𝐸 )  =  ( 𝐵  ×  𝐸 ) | 
						
							| 9 |  | fracval | ⊢ (  Frac  ‘ 𝑅 )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) | 
						
							| 10 | 2 | oveq2i | ⊢ ( 𝑅  RLocal  𝐸 )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) | 
						
							| 11 | 9 3 10 | 3eqtr4i | ⊢ 𝐹  =  ( 𝑅  RLocal  𝐸 ) | 
						
							| 12 |  | id | ⊢ ( 𝑅  ∈  V  →  𝑅  ∈  V ) | 
						
							| 13 | 2 1 | rrgss | ⊢ 𝐸  ⊆  𝐵 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑅  ∈  V  →  𝐸  ⊆  𝐵 ) | 
						
							| 15 | 1 5 6 7 8 11 4 12 14 | rlocbas | ⊢ ( 𝑅  ∈  V  →  ( ( 𝐵  ×  𝐸 )  /   ∼  )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 16 |  | 0qs | ⊢ ( ∅  /   ∼  )  =  ∅ | 
						
							| 17 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  ( Base ‘ 𝑅 )  =  ∅ ) | 
						
							| 18 | 1 17 | eqtrid | ⊢ ( ¬  𝑅  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 19 | 18 | xpeq1d | ⊢ ( ¬  𝑅  ∈  V  →  ( 𝐵  ×  𝐸 )  =  ( ∅  ×  𝐸 ) ) | 
						
							| 20 |  | 0xp | ⊢ ( ∅  ×  𝐸 )  =  ∅ | 
						
							| 21 | 19 20 | eqtrdi | ⊢ ( ¬  𝑅  ∈  V  →  ( 𝐵  ×  𝐸 )  =  ∅ ) | 
						
							| 22 | 21 | qseq1d | ⊢ ( ¬  𝑅  ∈  V  →  ( ( 𝐵  ×  𝐸 )  /   ∼  )  =  ( ∅  /   ∼  ) ) | 
						
							| 23 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  (  Frac  ‘ 𝑅 )  =  ∅ ) | 
						
							| 24 | 3 23 | eqtrid | ⊢ ( ¬  𝑅  ∈  V  →  𝐹  =  ∅ ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ¬  𝑅  ∈  V  →  ( Base ‘ 𝐹 )  =  ( Base ‘ ∅ ) ) | 
						
							| 26 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 27 | 25 26 | eqtr4di | ⊢ ( ¬  𝑅  ∈  V  →  ( Base ‘ 𝐹 )  =  ∅ ) | 
						
							| 28 | 16 22 27 | 3eqtr4a | ⊢ ( ¬  𝑅  ∈  V  →  ( ( 𝐵  ×  𝐸 )  /   ∼  )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 29 | 15 28 | pm2.61i | ⊢ ( ( 𝐵  ×  𝐸 )  /   ∼  )  =  ( Base ‘ 𝐹 ) |