| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlocbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | rlocbas.1 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | rlocbas.2 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | rlocbas.3 | ⊢  −   =  ( -g ‘ 𝑅 ) | 
						
							| 5 |  | rlocbas.w | ⊢ 𝑊  =  ( 𝐵  ×  𝑆 ) | 
						
							| 6 |  | rlocbas.l | ⊢ 𝐿  =  ( 𝑅  RLocal  𝑆 ) | 
						
							| 7 |  | rlocbas.4 | ⊢  ∼   =  ( 𝑅  ~RL  𝑆 ) | 
						
							| 8 |  | rlocbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 9 |  | rlocbas.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( le ‘ 𝑅 )  =  ( le ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( Scalar ‘ 𝑅 )  =  ( Scalar ‘ 𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑅 ) )  =  ( Base ‘ ( Scalar ‘ 𝑅 ) ) | 
						
							| 14 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑅 )  =  (  ·𝑠  ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( TopSet ‘ 𝑅 )  =  ( TopSet ‘ 𝑅 ) | 
						
							| 16 |  | eqid | ⊢ ( dist ‘ 𝑅 )  =  ( dist ‘ 𝑅 ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 )  =  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 )  =  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 )  =  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) | 
						
							| 20 |  | eqid | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } | 
						
							| 21 |  | eqid | ⊢ ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) )  =  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) | 
						
							| 22 | 1 2 3 4 10 11 12 13 14 5 7 15 16 17 18 19 20 21 8 9 | rlocval | ⊢ ( 𝜑  →  ( 𝑅  RLocal  𝑆 )  =  ( ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } )  /s   ∼  ) ) | 
						
							| 23 | 6 22 | eqtrid | ⊢ ( 𝜑  →  𝐿  =  ( ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } )  /s   ∼  ) ) | 
						
							| 24 |  | eqidd | ⊢ ( 𝜑  →  ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } )  =  ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) ) | 
						
							| 25 |  | eqid | ⊢ ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } )  =  ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) | 
						
							| 26 | 25 | imasvalstr | ⊢ ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } )  Struct  〈 1 ,  ; 1 2 〉 | 
						
							| 27 |  | baseid | ⊢ Base  =  Slot  ( Base ‘ ndx ) | 
						
							| 28 |  | snsstp1 | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑊 〉 }  ⊆  { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 } | 
						
							| 29 |  | ssun1 | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ⊆  ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } ) | 
						
							| 30 |  | ssun1 | ⊢ ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) | 
						
							| 31 | 29 30 | sstri | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) | 
						
							| 32 | 28 31 | sstri | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑊 〉 }  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) | 
						
							| 33 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 35 | 34 9 | ssexd | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 36 | 34 35 | xpexd | ⊢ ( 𝜑  →  ( 𝐵  ×  𝑆 )  ∈  V ) | 
						
							| 37 | 5 36 | eqeltrid | ⊢ ( 𝜑  →  𝑊  ∈  V ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) )  =  ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) ) | 
						
							| 39 | 24 26 27 32 37 38 | strfv3 | ⊢ ( 𝜑  →  ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) )  =  𝑊 ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( 𝜑  →  𝑊  =  ( Base ‘ ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } ) ) ) | 
						
							| 41 | 7 | ovexi | ⊢  ∼   ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →   ∼   ∈  V ) | 
						
							| 43 |  | tpex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∈  V | 
						
							| 44 |  | tpex | ⊢ { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 }  ∈  V | 
						
							| 45 | 43 44 | unex | ⊢ ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∈  V | 
						
							| 46 |  | tpex | ⊢ { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 }  ∈  V | 
						
							| 47 | 45 46 | unex | ⊢ ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } )  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( 𝜑  →  ( ( { 〈 ( Base ‘ ndx ) ,  𝑊 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( +g ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  〈 ( ( 1st  ‘ 𝑎 )  ·  ( 1st  ‘ 𝑏 ) ) ,  ( ( 2nd  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) 〉 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑅 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑅 ) ) ,  𝑎  ∈  𝑊  ↦  〈 ( 𝑘 (  ·𝑠  ‘ 𝑅 ) ( 1st  ‘ 𝑎 ) ) ,  ( 2nd  ‘ 𝑎 ) 〉 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ∅ 〉 } )  ∪  { 〈 ( TopSet ‘ ndx ) ,  ( ( TopSet ‘ 𝑅 )  ×t  ( ( TopSet ‘ 𝑅 )  ↾t  𝑆 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  𝑊  ∧  𝑏  ∈  𝑊 )  ∧  ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( le ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) } 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑎  ∈  𝑊 ,  𝑏  ∈  𝑊  ↦  ( ( ( 1st  ‘ 𝑎 )  ·  ( 2nd  ‘ 𝑏 ) ) ( dist ‘ 𝑅 ) ( ( 1st  ‘ 𝑏 )  ·  ( 2nd  ‘ 𝑎 ) ) ) ) 〉 } )  ∈  V ) | 
						
							| 49 | 23 40 42 48 | qusbas | ⊢ ( 𝜑  →  ( 𝑊  /   ∼  )  =  ( Base ‘ 𝐿 ) ) |