| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlocbas.b |
|- B = ( Base ` R ) |
| 2 |
|
rlocbas.1 |
|- .0. = ( 0g ` R ) |
| 3 |
|
rlocbas.2 |
|- .x. = ( .r ` R ) |
| 4 |
|
rlocbas.3 |
|- .- = ( -g ` R ) |
| 5 |
|
rlocbas.w |
|- W = ( B X. S ) |
| 6 |
|
rlocbas.l |
|- L = ( R RLocal S ) |
| 7 |
|
rlocbas.4 |
|- .~ = ( R ~RL S ) |
| 8 |
|
rlocbas.r |
|- ( ph -> R e. V ) |
| 9 |
|
rlocbas.s |
|- ( ph -> S C_ B ) |
| 10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 11 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
| 12 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
| 13 |
|
eqid |
|- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
| 14 |
|
eqid |
|- ( .s ` R ) = ( .s ` R ) |
| 15 |
|
eqid |
|- ( TopSet ` R ) = ( TopSet ` R ) |
| 16 |
|
eqid |
|- ( dist ` R ) = ( dist ` R ) |
| 17 |
|
eqid |
|- ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
| 18 |
|
eqid |
|- ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) = ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) |
| 19 |
|
eqid |
|- ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) = ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) |
| 20 |
|
eqid |
|- { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } |
| 21 |
|
eqid |
|- ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
| 22 |
1 2 3 4 10 11 12 13 14 5 7 15 16 17 18 19 20 21 8 9
|
rlocval |
|- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) |
| 23 |
6 22
|
eqtrid |
|- ( ph -> L = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) /s .~ ) ) |
| 24 |
|
eqidd |
|- ( ph -> ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
| 25 |
|
eqid |
|- ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
| 26 |
25
|
imasvalstr |
|- ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) Struct <. 1 , ; 1 2 >. |
| 27 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 28 |
|
snsstp1 |
|- { <. ( Base ` ndx ) , W >. } C_ { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } |
| 29 |
|
ssun1 |
|- { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) |
| 30 |
|
ssun1 |
|- ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) C_ ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
| 31 |
29 30
|
sstri |
|- { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } C_ ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
| 32 |
28 31
|
sstri |
|- { <. ( Base ` ndx ) , W >. } C_ ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) |
| 33 |
1
|
fvexi |
|- B e. _V |
| 34 |
33
|
a1i |
|- ( ph -> B e. _V ) |
| 35 |
34 9
|
ssexd |
|- ( ph -> S e. _V ) |
| 36 |
34 35
|
xpexd |
|- ( ph -> ( B X. S ) e. _V ) |
| 37 |
5 36
|
eqeltrid |
|- ( ph -> W e. _V ) |
| 38 |
|
eqid |
|- ( Base ` ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = ( Base ` ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) |
| 39 |
24 26 27 32 37 38
|
strfv3 |
|- ( ph -> ( Base ` ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) = W ) |
| 40 |
39
|
eqcomd |
|- ( ph -> W = ( Base ` ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) ) ) |
| 41 |
7
|
ovexi |
|- .~ e. _V |
| 42 |
41
|
a1i |
|- ( ph -> .~ e. _V ) |
| 43 |
|
tpex |
|- { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } e. _V |
| 44 |
|
tpex |
|- { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } e. _V |
| 45 |
43 44
|
unex |
|- ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) e. _V |
| 46 |
|
tpex |
|- { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } e. _V |
| 47 |
45 46
|
unex |
|- ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) e. _V |
| 48 |
47
|
a1i |
|- ( ph -> ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , ( a e. W , b e. W |-> <. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( +g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. W , b e. W |-> <. ( ( 1st ` a ) .x. ( 1st ` b ) ) , ( ( 2nd ` a ) .x. ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` R ) ) , a e. W |-> <. ( k ( .s ` R ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` R ) tX ( ( TopSet ` R ) |`t S ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( le ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. W , b e. W |-> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( dist ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) >. } ) e. _V ) |
| 49 |
23 40 42 48
|
qusbas |
|- ( ph -> ( W /. .~ ) = ( Base ` L ) ) |