| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fracerl.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
fracerl.2 |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
fracerl.3 |
⊢ ∼ = ( 𝑅 ~RL ( RLReg ‘ 𝑅 ) ) |
| 4 |
|
fracerl.4 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
fracerl.5 |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
| 6 |
|
fracerl.6 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 7 |
|
fracerl.7 |
⊢ ( 𝜑 → 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) |
| 8 |
|
fracerl.8 |
⊢ ( 𝜑 → 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) = ( 𝐵 × ( RLReg ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } |
| 13 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
| 14 |
13 1
|
rrgss |
⊢ ( RLReg ‘ 𝑅 ) ⊆ 𝐵 |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( RLReg ‘ 𝑅 ) ⊆ 𝐵 ) |
| 16 |
1 9 2 10 11 12 15
|
erlval |
⊢ ( 𝜑 → ( 𝑅 ~RL ( RLReg ‘ 𝑅 ) ) = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } ) |
| 17 |
3 16
|
eqtrid |
⊢ ( 𝜑 → ∼ = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 𝑏 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ) } ) |
| 18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝑎 = 〈 𝐸 , 𝐹 〉 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑎 ) = ( 1st ‘ 〈 𝐸 , 𝐹 〉 ) ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) |
| 21 |
|
op1stg |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐸 ) |
| 22 |
5 20 21
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐸 ) |
| 23 |
19 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑎 ) = 𝐸 ) |
| 24 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝑏 = 〈 𝐺 , 𝐻 〉 ) |
| 25 |
24
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 〈 𝐺 , 𝐻 〉 ) ) |
| 26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) |
| 27 |
|
op2ndg |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐻 ) |
| 28 |
6 26 27
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐻 ) |
| 29 |
25 28
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑏 ) = 𝐻 ) |
| 30 |
23 29
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) = ( 𝐸 · 𝐻 ) ) |
| 31 |
24
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑏 ) = ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) ) |
| 32 |
|
op1stg |
⊢ ( ( 𝐺 ∈ 𝐵 ∧ 𝐻 ∈ ( RLReg ‘ 𝑅 ) ) → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐺 ) |
| 33 |
6 26 32
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 〈 𝐺 , 𝐻 〉 ) = 𝐺 ) |
| 34 |
31 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 1st ‘ 𝑏 ) = 𝐺 ) |
| 35 |
18
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑎 ) = ( 2nd ‘ 〈 𝐸 , 𝐹 〉 ) ) |
| 36 |
|
op2ndg |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ ( RLReg ‘ 𝑅 ) ) → ( 2nd ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐹 ) |
| 37 |
5 20 36
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 〈 𝐸 , 𝐹 〉 ) = 𝐹 ) |
| 38 |
35 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 2nd ‘ 𝑎 ) = 𝐹 ) |
| 39 |
34 38
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) = ( 𝐺 · 𝐹 ) ) |
| 40 |
30 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) = ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) ) |
| 42 |
41
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 43 |
42
|
rexbidv |
⊢ ( ( 𝜑 ∧ ( 𝑎 = 〈 𝐸 , 𝐹 〉 ∧ 𝑏 = 〈 𝐺 , 𝐻 〉 ) ) → ( ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑏 ) ) ( -g ‘ 𝑅 ) ( ( 1st ‘ 𝑏 ) · ( 2nd ‘ 𝑎 ) ) ) ) = ( 0g ‘ 𝑅 ) ↔ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 44 |
17 43
|
brab2d |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∼ 〈 𝐺 , 𝐻 〉 ↔ ( ( 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 45 |
5 7
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) |
| 46 |
6 8
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) |
| 47 |
45 46
|
jca |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ) |
| 48 |
47
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 〈 𝐸 , 𝐹 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ∧ 〈 𝐺 , 𝐻 〉 ∈ ( 𝐵 × ( RLReg ‘ 𝑅 ) ) ) ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 49 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) |
| 50 |
4
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
| 52 |
4
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 54 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐸 ∈ 𝐵 ) |
| 55 |
14 8
|
sselid |
⊢ ( 𝜑 → 𝐻 ∈ 𝐵 ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐻 ∈ 𝐵 ) |
| 57 |
1 2 53 54 56
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝐸 · 𝐻 ) ∈ 𝐵 ) |
| 58 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐺 ∈ 𝐵 ) |
| 59 |
14 7
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 60 |
59
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → 𝐹 ∈ 𝐵 ) |
| 61 |
1 2 53 58 60
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝐺 · 𝐹 ) ∈ 𝐵 ) |
| 62 |
1 10
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐸 · 𝐻 ) ∈ 𝐵 ∧ ( 𝐺 · 𝐹 ) ∈ 𝐵 ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) |
| 63 |
51 57 61 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) |
| 64 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 65 |
13 1 2 9
|
rrgeq0i |
⊢ ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) → ( ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 66 |
65
|
imp |
⊢ ( ( ( 𝑡 ∈ ( RLReg ‘ 𝑅 ) ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ∈ 𝐵 ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
| 67 |
49 63 64 66
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ) ∧ ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
| 68 |
67
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
| 69 |
|
oveq1 |
⊢ ( 𝑡 = ( 1r ‘ 𝑅 ) → ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) ) |
| 70 |
69
|
eqeq1d |
⊢ ( 𝑡 = ( 1r ‘ 𝑅 ) → ( ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 71 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 72 |
71 13 52
|
1rrg |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ ( RLReg ‘ 𝑅 ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) ) |
| 76 |
1 71
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 77 |
52 76
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 78 |
1 2 9 52 77
|
ringrzd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 80 |
75 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 81 |
70 73 80
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 82 |
68 81
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( RLReg ‘ 𝑅 ) ( 𝑡 · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 83 |
44 48 82
|
3bitr2d |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∼ 〈 𝐺 , 𝐻 〉 ↔ ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 84 |
1 2 52 5 55
|
ringcld |
⊢ ( 𝜑 → ( 𝐸 · 𝐻 ) ∈ 𝐵 ) |
| 85 |
1 2 52 6 59
|
ringcld |
⊢ ( 𝜑 → ( 𝐺 · 𝐹 ) ∈ 𝐵 ) |
| 86 |
1 9 10
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐸 · 𝐻 ) ∈ 𝐵 ∧ ( 𝐺 · 𝐹 ) ∈ 𝐵 ) → ( ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐸 · 𝐻 ) = ( 𝐺 · 𝐹 ) ) ) |
| 87 |
50 84 85 86
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐺 · 𝐹 ) ) = ( 0g ‘ 𝑅 ) ↔ ( 𝐸 · 𝐻 ) = ( 𝐺 · 𝐹 ) ) ) |
| 88 |
83 87
|
bitrd |
⊢ ( 𝜑 → ( 〈 𝐸 , 𝐹 〉 ∼ 〈 𝐺 , 𝐻 〉 ↔ ( 𝐸 · 𝐻 ) = ( 𝐺 · 𝐹 ) ) ) |