| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fracerl.1 |
|- B = ( Base ` R ) |
| 2 |
|
fracerl.2 |
|- .x. = ( .r ` R ) |
| 3 |
|
fracerl.3 |
|- .~ = ( R ~RL ( RLReg ` R ) ) |
| 4 |
|
fracerl.4 |
|- ( ph -> R e. CRing ) |
| 5 |
|
fracerl.5 |
|- ( ph -> E e. B ) |
| 6 |
|
fracerl.6 |
|- ( ph -> G e. B ) |
| 7 |
|
fracerl.7 |
|- ( ph -> F e. ( RLReg ` R ) ) |
| 8 |
|
fracerl.8 |
|- ( ph -> H e. ( RLReg ` R ) ) |
| 9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 10 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 11 |
|
eqid |
|- ( B X. ( RLReg ` R ) ) = ( B X. ( RLReg ` R ) ) |
| 12 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( B X. ( RLReg ` R ) ) /\ b e. ( B X. ( RLReg ` R ) ) ) /\ E. t e. ( RLReg ` R ) ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) } = { <. a , b >. | ( ( a e. ( B X. ( RLReg ` R ) ) /\ b e. ( B X. ( RLReg ` R ) ) ) /\ E. t e. ( RLReg ` R ) ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) } |
| 13 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
| 14 |
13 1
|
rrgss |
|- ( RLReg ` R ) C_ B |
| 15 |
14
|
a1i |
|- ( ph -> ( RLReg ` R ) C_ B ) |
| 16 |
1 9 2 10 11 12 15
|
erlval |
|- ( ph -> ( R ~RL ( RLReg ` R ) ) = { <. a , b >. | ( ( a e. ( B X. ( RLReg ` R ) ) /\ b e. ( B X. ( RLReg ` R ) ) ) /\ E. t e. ( RLReg ` R ) ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) } ) |
| 17 |
3 16
|
eqtrid |
|- ( ph -> .~ = { <. a , b >. | ( ( a e. ( B X. ( RLReg ` R ) ) /\ b e. ( B X. ( RLReg ` R ) ) ) /\ E. t e. ( RLReg ` R ) ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) } ) |
| 18 |
|
simprl |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> a = <. E , F >. ) |
| 19 |
18
|
fveq2d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 1st ` a ) = ( 1st ` <. E , F >. ) ) |
| 20 |
7
|
adantr |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> F e. ( RLReg ` R ) ) |
| 21 |
|
op1stg |
|- ( ( E e. B /\ F e. ( RLReg ` R ) ) -> ( 1st ` <. E , F >. ) = E ) |
| 22 |
5 20 21
|
syl2an2r |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 1st ` <. E , F >. ) = E ) |
| 23 |
19 22
|
eqtrd |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 1st ` a ) = E ) |
| 24 |
|
simprr |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> b = <. G , H >. ) |
| 25 |
24
|
fveq2d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 2nd ` b ) = ( 2nd ` <. G , H >. ) ) |
| 26 |
8
|
adantr |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> H e. ( RLReg ` R ) ) |
| 27 |
|
op2ndg |
|- ( ( G e. B /\ H e. ( RLReg ` R ) ) -> ( 2nd ` <. G , H >. ) = H ) |
| 28 |
6 26 27
|
syl2an2r |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 2nd ` <. G , H >. ) = H ) |
| 29 |
25 28
|
eqtrd |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 2nd ` b ) = H ) |
| 30 |
23 29
|
oveq12d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( E .x. H ) ) |
| 31 |
24
|
fveq2d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 1st ` b ) = ( 1st ` <. G , H >. ) ) |
| 32 |
|
op1stg |
|- ( ( G e. B /\ H e. ( RLReg ` R ) ) -> ( 1st ` <. G , H >. ) = G ) |
| 33 |
6 26 32
|
syl2an2r |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 1st ` <. G , H >. ) = G ) |
| 34 |
31 33
|
eqtrd |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 1st ` b ) = G ) |
| 35 |
18
|
fveq2d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 2nd ` a ) = ( 2nd ` <. E , F >. ) ) |
| 36 |
|
op2ndg |
|- ( ( E e. B /\ F e. ( RLReg ` R ) ) -> ( 2nd ` <. E , F >. ) = F ) |
| 37 |
5 20 36
|
syl2an2r |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 2nd ` <. E , F >. ) = F ) |
| 38 |
35 37
|
eqtrd |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( 2nd ` a ) = F ) |
| 39 |
34 38
|
oveq12d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( G .x. F ) ) |
| 40 |
30 39
|
oveq12d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) |
| 41 |
40
|
oveq2d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) ) |
| 42 |
41
|
eqeq1d |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( 0g ` R ) <-> ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) ) |
| 43 |
42
|
rexbidv |
|- ( ( ph /\ ( a = <. E , F >. /\ b = <. G , H >. ) ) -> ( E. t e. ( RLReg ` R ) ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) ( -g ` R ) ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( 0g ` R ) <-> E. t e. ( RLReg ` R ) ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) ) |
| 44 |
17 43
|
brab2d |
|- ( ph -> ( <. E , F >. .~ <. G , H >. <-> ( ( <. E , F >. e. ( B X. ( RLReg ` R ) ) /\ <. G , H >. e. ( B X. ( RLReg ` R ) ) ) /\ E. t e. ( RLReg ` R ) ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) ) ) |
| 45 |
5 7
|
opelxpd |
|- ( ph -> <. E , F >. e. ( B X. ( RLReg ` R ) ) ) |
| 46 |
6 8
|
opelxpd |
|- ( ph -> <. G , H >. e. ( B X. ( RLReg ` R ) ) ) |
| 47 |
45 46
|
jca |
|- ( ph -> ( <. E , F >. e. ( B X. ( RLReg ` R ) ) /\ <. G , H >. e. ( B X. ( RLReg ` R ) ) ) ) |
| 48 |
47
|
biantrurd |
|- ( ph -> ( E. t e. ( RLReg ` R ) ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) <-> ( ( <. E , F >. e. ( B X. ( RLReg ` R ) ) /\ <. G , H >. e. ( B X. ( RLReg ` R ) ) ) /\ E. t e. ( RLReg ` R ) ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) ) ) |
| 49 |
|
simplr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> t e. ( RLReg ` R ) ) |
| 50 |
4
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 51 |
50
|
ad2antrr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> R e. Grp ) |
| 52 |
4
|
crngringd |
|- ( ph -> R e. Ring ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> R e. Ring ) |
| 54 |
5
|
ad2antrr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> E e. B ) |
| 55 |
14 8
|
sselid |
|- ( ph -> H e. B ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> H e. B ) |
| 57 |
1 2 53 54 56
|
ringcld |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> ( E .x. H ) e. B ) |
| 58 |
6
|
ad2antrr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> G e. B ) |
| 59 |
14 7
|
sselid |
|- ( ph -> F e. B ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> F e. B ) |
| 61 |
1 2 53 58 60
|
ringcld |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> ( G .x. F ) e. B ) |
| 62 |
1 10
|
grpsubcl |
|- ( ( R e. Grp /\ ( E .x. H ) e. B /\ ( G .x. F ) e. B ) -> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) e. B ) |
| 63 |
51 57 61 62
|
syl3anc |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) e. B ) |
| 64 |
|
simpr |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) |
| 65 |
13 1 2 9
|
rrgeq0i |
|- ( ( t e. ( RLReg ` R ) /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) e. B ) -> ( ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) -> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) ) |
| 66 |
65
|
imp |
|- ( ( ( t e. ( RLReg ` R ) /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) e. B ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) |
| 67 |
49 63 64 66
|
syl21anc |
|- ( ( ( ph /\ t e. ( RLReg ` R ) ) /\ ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) |
| 68 |
67
|
r19.29an |
|- ( ( ph /\ E. t e. ( RLReg ` R ) ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) -> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) |
| 69 |
|
oveq1 |
|- ( t = ( 1r ` R ) -> ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( ( 1r ` R ) .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) ) |
| 70 |
69
|
eqeq1d |
|- ( t = ( 1r ` R ) -> ( ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) <-> ( ( 1r ` R ) .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) ) |
| 71 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 72 |
71 13 52
|
1rrg |
|- ( ph -> ( 1r ` R ) e. ( RLReg ` R ) ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) -> ( 1r ` R ) e. ( RLReg ` R ) ) |
| 74 |
|
simpr |
|- ( ( ph /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) -> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) |
| 75 |
74
|
oveq2d |
|- ( ( ph /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) -> ( ( 1r ` R ) .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( ( 1r ` R ) .x. ( 0g ` R ) ) ) |
| 76 |
1 71
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 77 |
52 76
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
| 78 |
1 2 9 52 77
|
ringrzd |
|- ( ph -> ( ( 1r ` R ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) -> ( ( 1r ` R ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 80 |
75 79
|
eqtrd |
|- ( ( ph /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) -> ( ( 1r ` R ) .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) |
| 81 |
70 73 80
|
rspcedvdw |
|- ( ( ph /\ ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) -> E. t e. ( RLReg ` R ) ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) ) |
| 82 |
68 81
|
impbida |
|- ( ph -> ( E. t e. ( RLReg ` R ) ( t .x. ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) ) = ( 0g ` R ) <-> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) ) |
| 83 |
44 48 82
|
3bitr2d |
|- ( ph -> ( <. E , F >. .~ <. G , H >. <-> ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) ) ) |
| 84 |
1 2 52 5 55
|
ringcld |
|- ( ph -> ( E .x. H ) e. B ) |
| 85 |
1 2 52 6 59
|
ringcld |
|- ( ph -> ( G .x. F ) e. B ) |
| 86 |
1 9 10
|
grpsubeq0 |
|- ( ( R e. Grp /\ ( E .x. H ) e. B /\ ( G .x. F ) e. B ) -> ( ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) <-> ( E .x. H ) = ( G .x. F ) ) ) |
| 87 |
50 84 85 86
|
syl3anc |
|- ( ph -> ( ( ( E .x. H ) ( -g ` R ) ( G .x. F ) ) = ( 0g ` R ) <-> ( E .x. H ) = ( G .x. F ) ) ) |
| 88 |
83 87
|
bitrd |
|- ( ph -> ( <. E , F >. .~ <. G , H >. <-> ( E .x. H ) = ( G .x. F ) ) ) |