| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fracf1.1 |
|- B = ( Base ` R ) |
| 2 |
|
fracf1.2 |
|- E = ( RLReg ` R ) |
| 3 |
|
fracf1.3 |
|- .1. = ( 1r ` R ) |
| 4 |
|
fracf1.4 |
|- ( ph -> R e. CRing ) |
| 5 |
|
fracf1.5 |
|- .~ = ( R ~RL E ) |
| 6 |
|
fracf1.6 |
|- F = ( x e. B |-> [ <. x , .1. >. ] .~ ) |
| 7 |
|
fracval |
|- ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) |
| 8 |
2
|
oveq2i |
|- ( R RLocal E ) = ( R RLocal ( RLReg ` R ) ) |
| 9 |
7 8
|
eqtr4i |
|- ( Frac ` R ) = ( R RLocal E ) |
| 10 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 11 |
4
|
crngringd |
|- ( ph -> R e. Ring ) |
| 12 |
2 10 11
|
rrgsubm |
|- ( ph -> E e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 13 |
|
ssidd |
|- ( ph -> E C_ E ) |
| 14 |
13 2
|
sseqtrdi |
|- ( ph -> E C_ ( RLReg ` R ) ) |
| 15 |
1 3 9 5 6 4 12 14
|
rlocf1 |
|- ( ph -> ( F : B -1-1-> ( ( B X. E ) /. .~ ) /\ F e. ( R RingHom ( Frac ` R ) ) ) ) |