| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fracf1.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | fracf1.2 |  |-  E = ( RLReg ` R ) | 
						
							| 3 |  | fracf1.3 |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | fracf1.4 |  |-  ( ph -> R e. CRing ) | 
						
							| 5 |  | fracf1.5 |  |-  .~ = ( R ~RL E ) | 
						
							| 6 |  | fracf1.6 |  |-  F = ( x e. B |-> [ <. x , .1. >. ] .~ ) | 
						
							| 7 |  | fracval |  |-  ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) | 
						
							| 8 | 2 | oveq2i |  |-  ( R RLocal E ) = ( R RLocal ( RLReg ` R ) ) | 
						
							| 9 | 7 8 | eqtr4i |  |-  ( Frac ` R ) = ( R RLocal E ) | 
						
							| 10 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 11 | 4 | crngringd |  |-  ( ph -> R e. Ring ) | 
						
							| 12 | 2 10 11 | rrgsubm |  |-  ( ph -> E e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 13 |  | ssidd |  |-  ( ph -> E C_ E ) | 
						
							| 14 | 13 2 | sseqtrdi |  |-  ( ph -> E C_ ( RLReg ` R ) ) | 
						
							| 15 | 1 3 9 5 6 4 12 14 | rlocf1 |  |-  ( ph -> ( F : B -1-1-> ( ( B X. E ) /. .~ ) /\ F e. ( R RingHom ( Frac ` R ) ) ) ) |