| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fracfld.1 |  |-  ( ph -> R e. IDomn ) | 
						
							| 2 |  | fracval |  |-  ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) | 
						
							| 3 | 1 | idomdomd |  |-  ( ph -> R e. Domn ) | 
						
							| 4 |  | domnnzr |  |-  ( R e. Domn -> R e. NzRing ) | 
						
							| 5 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 7 | 5 6 | nzrnz |  |-  ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 8 | 3 4 7 | 3syl |  |-  ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) | 
						
							| 9 |  | fvex |  |-  ( 1r ` R ) e. _V | 
						
							| 10 | 9 9 | op1st |  |-  ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) | 
						
							| 11 | 10 | a1i |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) ) | 
						
							| 12 |  | fvex |  |-  ( 0g ` R ) e. _V | 
						
							| 13 | 12 9 | op2nd |  |-  ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) | 
						
							| 14 | 13 | a1i |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) ) | 
						
							| 15 | 11 14 | oveq12d |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) = ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 17 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 18 | 1 | idomringd |  |-  ( ph -> R e. Ring ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> R e. Ring ) | 
						
							| 20 | 16 5 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 22 | 16 17 5 19 21 | ringlidmd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 23 | 15 22 | eqtrd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) = ( 1r ` R ) ) | 
						
							| 24 | 12 9 | op1st |  |-  ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 0g ` R ) | 
						
							| 25 | 24 | a1i |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 0g ` R ) ) | 
						
							| 26 | 9 9 | op2nd |  |-  ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) | 
						
							| 27 | 26 | a1i |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) ) | 
						
							| 28 | 25 27 | oveq12d |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) = ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) ) | 
						
							| 29 | 18 | ringgrpd |  |-  ( ph -> R e. Grp ) | 
						
							| 30 | 16 6 | grpidcl |  |-  ( R e. Grp -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ph -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 33 | 16 17 5 19 32 | ringridmd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) | 
						
							| 34 | 28 33 | eqtrd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) = ( 0g ` R ) ) | 
						
							| 35 | 23 34 | oveq12d |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) = ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( t ( .r ` R ) ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) ) ) | 
						
							| 37 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 38 |  | eqid |  |-  ( RLReg ` R ) = ( RLReg ` R ) | 
						
							| 39 | 38 16 | rrgss |  |-  ( RLReg ` R ) C_ ( Base ` R ) | 
						
							| 40 | 39 | a1i |  |-  ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( RLReg ` R ) C_ ( Base ` R ) ) | 
						
							| 41 | 40 | sselda |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> t e. ( Base ` R ) ) | 
						
							| 42 | 16 17 37 19 41 21 32 | ringsubdi |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) ) = ( ( t ( .r ` R ) ( 1r ` R ) ) ( -g ` R ) ( t ( .r ` R ) ( 0g ` R ) ) ) ) | 
						
							| 43 | 16 17 5 19 41 | ringridmd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( 1r ` R ) ) = t ) | 
						
							| 44 | 16 17 6 19 41 | ringrzd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 45 | 43 44 | oveq12d |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( t ( .r ` R ) ( 1r ` R ) ) ( -g ` R ) ( t ( .r ` R ) ( 0g ` R ) ) ) = ( t ( -g ` R ) ( 0g ` R ) ) ) | 
						
							| 46 | 29 | ad2antrr |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> R e. Grp ) | 
						
							| 47 | 16 6 37 | grpsubid1 |  |-  ( ( R e. Grp /\ t e. ( Base ` R ) ) -> ( t ( -g ` R ) ( 0g ` R ) ) = t ) | 
						
							| 48 | 46 41 47 | syl2anc |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( -g ` R ) ( 0g ` R ) ) = t ) | 
						
							| 49 | 45 48 | eqtrd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( t ( .r ` R ) ( 1r ` R ) ) ( -g ` R ) ( t ( .r ` R ) ( 0g ` R ) ) ) = t ) | 
						
							| 50 | 36 42 49 | 3eqtrd |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = t ) | 
						
							| 51 | 50 | eqeq1d |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) <-> t = ( 0g ` R ) ) ) | 
						
							| 52 | 51 | biimpa |  |-  ( ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) -> t = ( 0g ` R ) ) | 
						
							| 53 |  | simpr |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> t e. ( RLReg ` R ) ) | 
						
							| 54 | 38 6 | rrgnz |  |-  ( R e. NzRing -> -. ( 0g ` R ) e. ( RLReg ` R ) ) | 
						
							| 55 | 3 4 54 | 3syl |  |-  ( ph -> -. ( 0g ` R ) e. ( RLReg ` R ) ) | 
						
							| 56 | 55 | ad2antrr |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> -. ( 0g ` R ) e. ( RLReg ` R ) ) | 
						
							| 57 |  | nelne2 |  |-  ( ( t e. ( RLReg ` R ) /\ -. ( 0g ` R ) e. ( RLReg ` R ) ) -> t =/= ( 0g ` R ) ) | 
						
							| 58 | 53 56 57 | syl2anc |  |-  ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> t =/= ( 0g ` R ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) -> t =/= ( 0g ` R ) ) | 
						
							| 60 | 52 59 | pm2.21ddne |  |-  ( ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) -> ( 1r ` R ) = ( 0g ` R ) ) | 
						
							| 61 |  | eqid |  |-  ( R ~RL ( RLReg ` R ) ) = ( R ~RL ( RLReg ` R ) ) | 
						
							| 62 |  | eqid |  |-  ( ( Base ` R ) X. ( RLReg ` R ) ) = ( ( Base ` R ) X. ( RLReg ` R ) ) | 
						
							| 63 | 1 | idomcringd |  |-  ( ph -> R e. CRing ) | 
						
							| 64 | 16 38 6 | isdomn6 |  |-  ( R e. Domn <-> ( R e. NzRing /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) ) | 
						
							| 65 | 3 64 | sylib |  |-  ( ph -> ( R e. NzRing /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) ) | 
						
							| 66 | 65 | simprd |  |-  ( ph -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) | 
						
							| 67 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 68 | 16 6 67 | isdomn3 |  |-  ( R e. Domn <-> ( R e. Ring /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) e. ( SubMnd ` ( mulGrp ` R ) ) ) ) | 
						
							| 69 | 3 68 | sylib |  |-  ( ph -> ( R e. Ring /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) e. ( SubMnd ` ( mulGrp ` R ) ) ) ) | 
						
							| 70 | 69 | simprd |  |-  ( ph -> ( ( Base ` R ) \ { ( 0g ` R ) } ) e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 71 | 66 70 | eqeltrrd |  |-  ( ph -> ( RLReg ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 72 | 16 6 5 17 37 62 61 63 71 | erler |  |-  ( ph -> ( R ~RL ( RLReg ` R ) ) Er ( ( Base ` R ) X. ( RLReg ` R ) ) ) | 
						
							| 73 | 18 20 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 74 | 5 38 18 | 1rrg |  |-  ( ph -> ( 1r ` R ) e. ( RLReg ` R ) ) | 
						
							| 75 | 73 74 | opelxpd |  |-  ( ph -> <. ( 1r ` R ) , ( 1r ` R ) >. e. ( ( Base ` R ) X. ( RLReg ` R ) ) ) | 
						
							| 76 | 72 75 | erth |  |-  ( ph -> ( <. ( 1r ` R ) , ( 1r ` R ) >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. <-> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 77 | 76 | biimpar |  |-  ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> <. ( 1r ` R ) , ( 1r ` R ) >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. ) | 
						
							| 78 | 16 61 40 6 17 37 77 | erldi |  |-  ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> E. t e. ( RLReg ` R ) ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) | 
						
							| 79 | 60 78 | r19.29a |  |-  ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( 1r ` R ) = ( 0g ` R ) ) | 
						
							| 80 | 8 79 | mteqand |  |-  ( ph -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) =/= [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 81 |  | eqid |  |-  ( R RLocal ( RLReg ` R ) ) = ( R RLocal ( RLReg ` R ) ) | 
						
							| 82 |  | eqid |  |-  [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) | 
						
							| 83 | 6 5 81 61 63 71 82 | rloc1r |  |-  ( ph -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 84 |  | eqid |  |-  [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) | 
						
							| 85 | 6 5 81 61 63 71 84 | rloc0g |  |-  ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 86 | 80 83 85 | 3netr3d |  |-  ( ph -> ( 1r ` ( R RLocal ( RLReg ` R ) ) ) =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 87 |  | oveq2 |  |-  ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 88 | 87 | eqeq1d |  |-  ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) <-> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) | 
						
							| 89 |  | oveq1 |  |-  ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) ) | 
						
							| 90 | 89 | eqeq1d |  |-  ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) <-> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) | 
						
							| 91 | 88 90 | anbi12d |  |-  ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) <-> ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) ) | 
						
							| 92 |  | simplr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> b e. ( RLReg ` R ) ) | 
						
							| 93 | 39 92 | sselid |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> b e. ( Base ` R ) ) | 
						
							| 94 |  | simpllr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a e. ( Base ` R ) ) | 
						
							| 95 |  | simplr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 96 | 72 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( R ~RL ( RLReg ` R ) ) Er ( ( Base ` R ) X. ( RLReg ` R ) ) ) | 
						
							| 97 | 18 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> R e. Ring ) | 
						
							| 98 | 97 20 | syl |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 99 | 16 17 6 97 98 | ringlzd |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) | 
						
							| 100 |  | simpr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> a = ( 0g ` R ) ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( a ( .r ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) ) | 
						
							| 102 | 93 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> b e. ( Base ` R ) ) | 
						
							| 103 | 16 17 6 97 102 | ringlzd |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) b ) = ( 0g ` R ) ) | 
						
							| 104 | 99 101 103 | 3eqtr4d |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( a ( .r ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( .r ` R ) b ) ) | 
						
							| 105 | 63 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> R e. CRing ) | 
						
							| 106 | 94 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> a e. ( Base ` R ) ) | 
						
							| 107 | 31 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 108 | 92 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> b e. ( RLReg ` R ) ) | 
						
							| 109 | 74 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( 1r ` R ) e. ( RLReg ` R ) ) | 
						
							| 110 | 16 17 61 105 106 107 108 109 | fracerl |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( <. a , b >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. <-> ( a ( .r ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( .r ` R ) b ) ) ) | 
						
							| 111 | 104 110 | mpbird |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> <. a , b >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. ) | 
						
							| 112 | 96 111 | erthi |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 113 | 85 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 114 | 95 112 113 | 3eqtrd |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> x = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 115 |  | eldifsni |  |-  ( x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) -> x =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 116 | 115 | ad5antlr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> x =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 117 | 116 | neneqd |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> -. x = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 118 | 114 117 | pm2.65da |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> -. a = ( 0g ` R ) ) | 
						
							| 119 | 118 | neqned |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a =/= ( 0g ` R ) ) | 
						
							| 120 | 94 119 | eldifsnd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) | 
						
							| 121 | 66 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) | 
						
							| 122 | 120 121 | eleqtrd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a e. ( RLReg ` R ) ) | 
						
							| 123 | 93 122 | opelxpd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> <. b , a >. e. ( ( Base ` R ) X. ( RLReg ` R ) ) ) | 
						
							| 124 |  | ovex |  |-  ( R ~RL ( RLReg ` R ) ) e. _V | 
						
							| 125 | 124 | ecelqsi |  |-  ( <. b , a >. e. ( ( Base ` R ) X. ( RLReg ` R ) ) -> [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) e. ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 126 | 123 125 | syl |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) e. ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 127 | 39 | a1i |  |-  ( ph -> ( RLReg ` R ) C_ ( Base ` R ) ) | 
						
							| 128 | 16 6 17 37 62 81 61 1 127 | rlocbas |  |-  ( ph -> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 129 | 128 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 130 | 126 129 | eleqtrd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 131 |  | eqid |  |-  ( Base ` ( R RLocal ( RLReg ` R ) ) ) = ( Base ` ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 132 |  | eqid |  |-  ( .r ` ( R RLocal ( RLReg ` R ) ) ) = ( .r ` ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 133 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 134 | 16 17 133 81 61 63 71 | rloccring |  |-  ( ph -> ( R RLocal ( RLReg ` R ) ) e. CRing ) | 
						
							| 135 | 134 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( R RLocal ( RLReg ` R ) ) e. CRing ) | 
						
							| 136 |  | simp-4r |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) | 
						
							| 137 | 136 | eldifad |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> x e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 138 | 131 132 135 137 130 | crngcomd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) ) | 
						
							| 139 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 140 | 139 | oveq2d |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 141 | 63 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> R e. CRing ) | 
						
							| 142 | 71 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( RLReg ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 143 | 16 17 133 81 61 141 142 93 94 122 92 132 | rlocmulval |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) = [ <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 144 | 72 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( R ~RL ( RLReg ` R ) ) Er ( ( Base ` R ) X. ( RLReg ` R ) ) ) | 
						
							| 145 | 16 17 141 93 94 | crngcomd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( b ( .r ` R ) a ) = ( a ( .r ` R ) b ) ) | 
						
							| 146 | 18 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> R e. Ring ) | 
						
							| 147 | 16 17 146 93 94 | ringcld |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( b ( .r ` R ) a ) e. ( Base ` R ) ) | 
						
							| 148 | 16 17 5 146 147 | ringridmd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( b ( .r ` R ) a ) ( .r ` R ) ( 1r ` R ) ) = ( b ( .r ` R ) a ) ) | 
						
							| 149 | 16 17 146 94 93 | ringcld |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` R ) ) | 
						
							| 150 | 16 17 5 146 149 | ringlidmd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( 1r ` R ) ( .r ` R ) ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) | 
						
							| 151 | 145 148 150 | 3eqtr4d |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( b ( .r ` R ) a ) ( .r ` R ) ( 1r ` R ) ) = ( ( 1r ` R ) ( .r ` R ) ( a ( .r ` R ) b ) ) ) | 
						
							| 152 | 73 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 153 | 94 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> a e. ( Base ` R ) ) | 
						
							| 154 | 31 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( 0g ` R ) e. ( Base ` R ) ) | 
						
							| 155 | 92 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> b e. ( RLReg ` R ) ) | 
						
							| 156 | 66 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) | 
						
							| 157 | 155 156 | eleqtrrd |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) | 
						
							| 158 | 1 | adantr |  |-  ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> R e. IDomn ) | 
						
							| 159 | 158 | ad4antr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> R e. IDomn ) | 
						
							| 160 |  | simpr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( a ( .r ` R ) b ) = ( 0g ` R ) ) | 
						
							| 161 | 146 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> R e. Ring ) | 
						
							| 162 | 93 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> b e. ( Base ` R ) ) | 
						
							| 163 | 16 17 6 161 162 | ringlzd |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) b ) = ( 0g ` R ) ) | 
						
							| 164 | 160 163 | eqtr4d |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( a ( .r ` R ) b ) = ( ( 0g ` R ) ( .r ` R ) b ) ) | 
						
							| 165 | 16 6 17 153 154 157 159 164 | idomrcan |  |-  ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> a = ( 0g ` R ) ) | 
						
							| 166 | 118 165 | mtand |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> -. ( a ( .r ` R ) b ) = ( 0g ` R ) ) | 
						
							| 167 | 166 | neqned |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) =/= ( 0g ` R ) ) | 
						
							| 168 | 149 167 | eldifsnd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) | 
						
							| 169 | 168 121 | eleqtrd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) e. ( RLReg ` R ) ) | 
						
							| 170 | 74 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( 1r ` R ) e. ( RLReg ` R ) ) | 
						
							| 171 | 16 17 61 141 147 152 169 170 | fracerl |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ( R ~RL ( RLReg ` R ) ) <. ( 1r ` R ) , ( 1r ` R ) >. <-> ( ( b ( .r ` R ) a ) ( .r ` R ) ( 1r ` R ) ) = ( ( 1r ` R ) ( .r ` R ) ( a ( .r ` R ) b ) ) ) ) | 
						
							| 172 | 151 171 | mpbird |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ( R ~RL ( RLReg ` R ) ) <. ( 1r ` R ) , ( 1r ` R ) >. ) | 
						
							| 173 | 144 172 | erthi |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 174 | 143 173 | eqtrd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) = [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 175 | 83 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 176 | 140 174 175 | 3eqtrd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 177 | 138 176 | eqtrd |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) | 
						
							| 178 | 177 176 | jca |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) | 
						
							| 179 | 91 130 178 | rspcedvdw |  |-  ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) | 
						
							| 180 | 128 | difeq1d |  |-  ( ph -> ( ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) = ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) | 
						
							| 181 | 180 | eleq2d |  |-  ( ph -> ( x e. ( ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) <-> x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) ) | 
						
							| 182 | 181 | biimpar |  |-  ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> x e. ( ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) | 
						
							| 183 | 182 | eldifad |  |-  ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> x e. ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 184 | 183 | elrlocbasi |  |-  ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> E. a e. ( Base ` R ) E. b e. ( RLReg ` R ) x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 185 | 179 184 | r19.29vva |  |-  ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) | 
						
							| 186 | 185 | ralrimiva |  |-  ( ph -> A. x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) | 
						
							| 187 |  | eqid |  |-  ( 0g ` ( R RLocal ( RLReg ` R ) ) ) = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 188 |  | eqid |  |-  ( 1r ` ( R RLocal ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 189 |  | eqid |  |-  ( Unit ` ( R RLocal ( RLReg ` R ) ) ) = ( Unit ` ( R RLocal ( RLReg ` R ) ) ) | 
						
							| 190 | 134 | crngringd |  |-  ( ph -> ( R RLocal ( RLReg ` R ) ) e. Ring ) | 
						
							| 191 | 131 187 188 132 189 190 | isdrng4 |  |-  ( ph -> ( ( R RLocal ( RLReg ` R ) ) e. DivRing <-> ( ( 1r ` ( R RLocal ( RLReg ` R ) ) ) =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) /\ A. x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) ) ) | 
						
							| 192 | 86 186 191 | mpbir2and |  |-  ( ph -> ( R RLocal ( RLReg ` R ) ) e. DivRing ) | 
						
							| 193 |  | isfld |  |-  ( ( R RLocal ( RLReg ` R ) ) e. Field <-> ( ( R RLocal ( RLReg ` R ) ) e. DivRing /\ ( R RLocal ( RLReg ` R ) ) e. CRing ) ) | 
						
							| 194 | 192 134 193 | sylanbrc |  |-  ( ph -> ( R RLocal ( RLReg ` R ) ) e. Field ) | 
						
							| 195 | 2 194 | eqeltrid |  |-  ( ph -> ( Frac ` R ) e. Field ) |