Step |
Hyp |
Ref |
Expression |
1 |
|
fracfld.1 |
|- ( ph -> R e. IDomn ) |
2 |
|
fracval |
|- ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) |
3 |
1
|
idomdomd |
|- ( ph -> R e. Domn ) |
4 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
5 6
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
8 |
3 4 7
|
3syl |
|- ( ph -> ( 1r ` R ) =/= ( 0g ` R ) ) |
9 |
|
fvex |
|- ( 1r ` R ) e. _V |
10 |
9 9
|
op1st |
|- ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) |
11 |
10
|
a1i |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) ) |
12 |
|
fvex |
|- ( 0g ` R ) e. _V |
13 |
12 9
|
op2nd |
|- ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) |
14 |
13
|
a1i |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) ) |
15 |
11 14
|
oveq12d |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) = ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) ) |
16 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
18 |
1
|
idomringd |
|- ( ph -> R e. Ring ) |
19 |
18
|
ad2antrr |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> R e. Ring ) |
20 |
16 5
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
21 |
19 20
|
syl |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
22 |
16 17 5 19 21
|
ringlidmd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
23 |
15 22
|
eqtrd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) = ( 1r ` R ) ) |
24 |
12 9
|
op1st |
|- ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 0g ` R ) |
25 |
24
|
a1i |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) = ( 0g ` R ) ) |
26 |
9 9
|
op2nd |
|- ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) |
27 |
26
|
a1i |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) = ( 1r ` R ) ) |
28 |
25 27
|
oveq12d |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) = ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) ) |
29 |
18
|
ringgrpd |
|- ( ph -> R e. Grp ) |
30 |
16 6
|
grpidcl |
|- ( R e. Grp -> ( 0g ` R ) e. ( Base ` R ) ) |
31 |
29 30
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
32 |
31
|
ad2antrr |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( 0g ` R ) e. ( Base ` R ) ) |
33 |
16 17 5 19 32
|
ringridmd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) |
34 |
28 33
|
eqtrd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) = ( 0g ` R ) ) |
35 |
23 34
|
oveq12d |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) = ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) ) |
36 |
35
|
oveq2d |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( t ( .r ` R ) ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) ) ) |
37 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
38 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
39 |
38 16
|
rrgss |
|- ( RLReg ` R ) C_ ( Base ` R ) |
40 |
39
|
a1i |
|- ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( RLReg ` R ) C_ ( Base ` R ) ) |
41 |
40
|
sselda |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> t e. ( Base ` R ) ) |
42 |
16 17 37 19 41 21 32
|
ringsubdi |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) ) = ( ( t ( .r ` R ) ( 1r ` R ) ) ( -g ` R ) ( t ( .r ` R ) ( 0g ` R ) ) ) ) |
43 |
16 17 5 19 41
|
ringridmd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( 1r ` R ) ) = t ) |
44 |
16 17 6 19 41
|
ringrzd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
45 |
43 44
|
oveq12d |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( t ( .r ` R ) ( 1r ` R ) ) ( -g ` R ) ( t ( .r ` R ) ( 0g ` R ) ) ) = ( t ( -g ` R ) ( 0g ` R ) ) ) |
46 |
29
|
ad2antrr |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> R e. Grp ) |
47 |
16 6 37
|
grpsubid1 |
|- ( ( R e. Grp /\ t e. ( Base ` R ) ) -> ( t ( -g ` R ) ( 0g ` R ) ) = t ) |
48 |
46 41 47
|
syl2anc |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( -g ` R ) ( 0g ` R ) ) = t ) |
49 |
45 48
|
eqtrd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( t ( .r ` R ) ( 1r ` R ) ) ( -g ` R ) ( t ( .r ` R ) ( 0g ` R ) ) ) = t ) |
50 |
36 42 49
|
3eqtrd |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = t ) |
51 |
50
|
eqeq1d |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> ( ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) <-> t = ( 0g ` R ) ) ) |
52 |
51
|
biimpa |
|- ( ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) -> t = ( 0g ` R ) ) |
53 |
|
simpr |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> t e. ( RLReg ` R ) ) |
54 |
38 6
|
rrgnz |
|- ( R e. NzRing -> -. ( 0g ` R ) e. ( RLReg ` R ) ) |
55 |
3 4 54
|
3syl |
|- ( ph -> -. ( 0g ` R ) e. ( RLReg ` R ) ) |
56 |
55
|
ad2antrr |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> -. ( 0g ` R ) e. ( RLReg ` R ) ) |
57 |
|
nelne2 |
|- ( ( t e. ( RLReg ` R ) /\ -. ( 0g ` R ) e. ( RLReg ` R ) ) -> t =/= ( 0g ` R ) ) |
58 |
53 56 57
|
syl2anc |
|- ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) -> t =/= ( 0g ` R ) ) |
59 |
58
|
adantr |
|- ( ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) -> t =/= ( 0g ` R ) ) |
60 |
52 59
|
pm2.21ddne |
|- ( ( ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) /\ t e. ( RLReg ` R ) ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) -> ( 1r ` R ) = ( 0g ` R ) ) |
61 |
|
eqid |
|- ( R ~RL ( RLReg ` R ) ) = ( R ~RL ( RLReg ` R ) ) |
62 |
|
eqid |
|- ( ( Base ` R ) X. ( RLReg ` R ) ) = ( ( Base ` R ) X. ( RLReg ` R ) ) |
63 |
1
|
idomcringd |
|- ( ph -> R e. CRing ) |
64 |
16 38 6
|
isdomn6 |
|- ( R e. Domn <-> ( R e. NzRing /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) ) |
65 |
3 64
|
sylib |
|- ( ph -> ( R e. NzRing /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) ) |
66 |
65
|
simprd |
|- ( ph -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) |
67 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
68 |
16 6 67
|
isdomn3 |
|- ( R e. Domn <-> ( R e. Ring /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) e. ( SubMnd ` ( mulGrp ` R ) ) ) ) |
69 |
3 68
|
sylib |
|- ( ph -> ( R e. Ring /\ ( ( Base ` R ) \ { ( 0g ` R ) } ) e. ( SubMnd ` ( mulGrp ` R ) ) ) ) |
70 |
69
|
simprd |
|- ( ph -> ( ( Base ` R ) \ { ( 0g ` R ) } ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
71 |
66 70
|
eqeltrrd |
|- ( ph -> ( RLReg ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
72 |
16 6 5 17 37 62 61 63 71
|
erler |
|- ( ph -> ( R ~RL ( RLReg ` R ) ) Er ( ( Base ` R ) X. ( RLReg ` R ) ) ) |
73 |
18 20
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
74 |
5 38 18
|
1rrg |
|- ( ph -> ( 1r ` R ) e. ( RLReg ` R ) ) |
75 |
73 74
|
opelxpd |
|- ( ph -> <. ( 1r ` R ) , ( 1r ` R ) >. e. ( ( Base ` R ) X. ( RLReg ` R ) ) ) |
76 |
72 75
|
erth |
|- ( ph -> ( <. ( 1r ` R ) , ( 1r ` R ) >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. <-> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) |
77 |
76
|
biimpar |
|- ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> <. ( 1r ` R ) , ( 1r ` R ) >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. ) |
78 |
16 61 40 6 17 37 77
|
erldi |
|- ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> E. t e. ( RLReg ` R ) ( t ( .r ` R ) ( ( ( 1st ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ) ( -g ` R ) ( ( 1st ` <. ( 0g ` R ) , ( 1r ` R ) >. ) ( .r ` R ) ( 2nd ` <. ( 1r ` R ) , ( 1r ` R ) >. ) ) ) ) = ( 0g ` R ) ) |
79 |
60 78
|
r19.29a |
|- ( ( ph /\ [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( 1r ` R ) = ( 0g ` R ) ) |
80 |
8 79
|
mteqand |
|- ( ph -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) =/= [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) |
81 |
|
eqid |
|- ( R RLocal ( RLReg ` R ) ) = ( R RLocal ( RLReg ` R ) ) |
82 |
|
eqid |
|- [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) |
83 |
6 5 81 61 63 71 82
|
rloc1r |
|- ( ph -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) |
84 |
|
eqid |
|- [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) |
85 |
6 5 81 61 63 71 84
|
rloc0g |
|- ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) |
86 |
80 83 85
|
3netr3d |
|- ( ph -> ( 1r ` ( R RLocal ( RLReg ` R ) ) ) =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) |
87 |
|
oveq2 |
|- ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) ) |
88 |
87
|
eqeq1d |
|- ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) <-> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) |
89 |
|
oveq1 |
|- ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) ) |
90 |
89
|
eqeq1d |
|- ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) <-> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) |
91 |
88 90
|
anbi12d |
|- ( y = [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) -> ( ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) <-> ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) ) |
92 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> b e. ( RLReg ` R ) ) |
93 |
39 92
|
sselid |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> b e. ( Base ` R ) ) |
94 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a e. ( Base ` R ) ) |
95 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) |
96 |
72
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( R ~RL ( RLReg ` R ) ) Er ( ( Base ` R ) X. ( RLReg ` R ) ) ) |
97 |
18
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> R e. Ring ) |
98 |
97 20
|
syl |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
99 |
16 17 6 97 98
|
ringlzd |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 0g ` R ) ) |
100 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> a = ( 0g ` R ) ) |
101 |
100
|
oveq1d |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( a ( .r ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( .r ` R ) ( 1r ` R ) ) ) |
102 |
93
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> b e. ( Base ` R ) ) |
103 |
16 17 6 97 102
|
ringlzd |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) b ) = ( 0g ` R ) ) |
104 |
99 101 103
|
3eqtr4d |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( a ( .r ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( .r ` R ) b ) ) |
105 |
63
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> R e. CRing ) |
106 |
94
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> a e. ( Base ` R ) ) |
107 |
31
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( 0g ` R ) e. ( Base ` R ) ) |
108 |
92
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> b e. ( RLReg ` R ) ) |
109 |
74
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( 1r ` R ) e. ( RLReg ` R ) ) |
110 |
16 17 61 105 106 107 108 109
|
fracerl |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> ( <. a , b >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. <-> ( a ( .r ` R ) ( 1r ` R ) ) = ( ( 0g ` R ) ( .r ` R ) b ) ) ) |
111 |
104 110
|
mpbird |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> <. a , b >. ( R ~RL ( RLReg ` R ) ) <. ( 0g ` R ) , ( 1r ` R ) >. ) |
112 |
96 111
|
erthi |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) |
113 |
85
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) |
114 |
95 112 113
|
3eqtrd |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> x = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) |
115 |
|
eldifsni |
|- ( x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) -> x =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) |
116 |
115
|
ad5antlr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> x =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) |
117 |
116
|
neneqd |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ a = ( 0g ` R ) ) -> -. x = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) ) |
118 |
114 117
|
pm2.65da |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> -. a = ( 0g ` R ) ) |
119 |
118
|
neqned |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a =/= ( 0g ` R ) ) |
120 |
94 119
|
eldifsnd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
121 |
66
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) |
122 |
120 121
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> a e. ( RLReg ` R ) ) |
123 |
93 122
|
opelxpd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> <. b , a >. e. ( ( Base ` R ) X. ( RLReg ` R ) ) ) |
124 |
|
ovex |
|- ( R ~RL ( RLReg ` R ) ) e. _V |
125 |
124
|
ecelqsi |
|- ( <. b , a >. e. ( ( Base ` R ) X. ( RLReg ` R ) ) -> [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) e. ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) |
126 |
123 125
|
syl |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) e. ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) |
127 |
39
|
a1i |
|- ( ph -> ( RLReg ` R ) C_ ( Base ` R ) ) |
128 |
16 6 17 37 62 81 61 1 127
|
rlocbas |
|- ( ph -> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) |
129 |
128
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) |
130 |
126 129
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) |
131 |
|
eqid |
|- ( Base ` ( R RLocal ( RLReg ` R ) ) ) = ( Base ` ( R RLocal ( RLReg ` R ) ) ) |
132 |
|
eqid |
|- ( .r ` ( R RLocal ( RLReg ` R ) ) ) = ( .r ` ( R RLocal ( RLReg ` R ) ) ) |
133 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
134 |
16 17 133 81 61 63 71
|
rloccring |
|- ( ph -> ( R RLocal ( RLReg ` R ) ) e. CRing ) |
135 |
134
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( R RLocal ( RLReg ` R ) ) e. CRing ) |
136 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) |
137 |
136
|
eldifad |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> x e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ) |
138 |
131 132 135 137 130
|
crngcomd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) ) |
139 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) |
140 |
139
|
oveq2d |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) ) |
141 |
63
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> R e. CRing ) |
142 |
71
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( RLReg ` R ) e. ( SubMnd ` ( mulGrp ` R ) ) ) |
143 |
16 17 133 81 61 141 142 93 94 122 92 132
|
rlocmulval |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) = [ <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ] ( R ~RL ( RLReg ` R ) ) ) |
144 |
72
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( R ~RL ( RLReg ` R ) ) Er ( ( Base ` R ) X. ( RLReg ` R ) ) ) |
145 |
16 17 141 93 94
|
crngcomd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( b ( .r ` R ) a ) = ( a ( .r ` R ) b ) ) |
146 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> R e. Ring ) |
147 |
16 17 146 93 94
|
ringcld |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( b ( .r ` R ) a ) e. ( Base ` R ) ) |
148 |
16 17 5 146 147
|
ringridmd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( b ( .r ` R ) a ) ( .r ` R ) ( 1r ` R ) ) = ( b ( .r ` R ) a ) ) |
149 |
16 17 146 94 93
|
ringcld |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` R ) ) |
150 |
16 17 5 146 149
|
ringlidmd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( 1r ` R ) ( .r ` R ) ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) |
151 |
145 148 150
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( b ( .r ` R ) a ) ( .r ` R ) ( 1r ` R ) ) = ( ( 1r ` R ) ( .r ` R ) ( a ( .r ` R ) b ) ) ) |
152 |
73
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
153 |
94
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> a e. ( Base ` R ) ) |
154 |
31
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( 0g ` R ) e. ( Base ` R ) ) |
155 |
92
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> b e. ( RLReg ` R ) ) |
156 |
66
|
ad5antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( ( Base ` R ) \ { ( 0g ` R ) } ) = ( RLReg ` R ) ) |
157 |
155 156
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> b e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
158 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> R e. IDomn ) |
159 |
158
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> R e. IDomn ) |
160 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( a ( .r ` R ) b ) = ( 0g ` R ) ) |
161 |
146
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> R e. Ring ) |
162 |
93
|
adantr |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> b e. ( Base ` R ) ) |
163 |
16 17 6 161 162
|
ringlzd |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) b ) = ( 0g ` R ) ) |
164 |
160 163
|
eqtr4d |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> ( a ( .r ` R ) b ) = ( ( 0g ` R ) ( .r ` R ) b ) ) |
165 |
16 6 17 153 154 157 159 164
|
idomrcan |
|- ( ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) /\ ( a ( .r ` R ) b ) = ( 0g ` R ) ) -> a = ( 0g ` R ) ) |
166 |
118 165
|
mtand |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> -. ( a ( .r ` R ) b ) = ( 0g ` R ) ) |
167 |
166
|
neqned |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) =/= ( 0g ` R ) ) |
168 |
149 167
|
eldifsnd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) e. ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
169 |
168 121
|
eleqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( a ( .r ` R ) b ) e. ( RLReg ` R ) ) |
170 |
74
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( 1r ` R ) e. ( RLReg ` R ) ) |
171 |
16 17 61 141 147 152 169 170
|
fracerl |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ( R ~RL ( RLReg ` R ) ) <. ( 1r ` R ) , ( 1r ` R ) >. <-> ( ( b ( .r ` R ) a ) ( .r ` R ) ( 1r ` R ) ) = ( ( 1r ` R ) ( .r ` R ) ( a ( .r ` R ) b ) ) ) ) |
172 |
151 171
|
mpbird |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ( R ~RL ( RLReg ` R ) ) <. ( 1r ` R ) , ( 1r ` R ) >. ) |
173 |
144 172
|
erthi |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. ( b ( .r ` R ) a ) , ( a ( .r ` R ) b ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) |
174 |
143 173
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) = [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) |
175 |
83
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) |
176 |
140 174 175
|
3eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) |
177 |
138 176
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) |
178 |
177 176
|
jca |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( [ <. b , a >. ] ( R ~RL ( RLReg ` R ) ) ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) |
179 |
91 130 178
|
rspcedvdw |
|- ( ( ( ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) /\ a e. ( Base ` R ) ) /\ b e. ( RLReg ` R ) ) /\ x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) -> E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) |
180 |
128
|
difeq1d |
|- ( ph -> ( ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) = ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) |
181 |
180
|
eleq2d |
|- ( ph -> ( x e. ( ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) <-> x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) ) |
182 |
181
|
biimpar |
|- ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> x e. ( ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) |
183 |
182
|
eldifad |
|- ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> x e. ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) |
184 |
183
|
elrlocbasi |
|- ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> E. a e. ( Base ` R ) E. b e. ( RLReg ` R ) x = [ <. a , b >. ] ( R ~RL ( RLReg ` R ) ) ) |
185 |
179 184
|
r19.29vva |
|- ( ( ph /\ x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) ) -> E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) |
186 |
185
|
ralrimiva |
|- ( ph -> A. x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) |
187 |
|
eqid |
|- ( 0g ` ( R RLocal ( RLReg ` R ) ) ) = ( 0g ` ( R RLocal ( RLReg ` R ) ) ) |
188 |
|
eqid |
|- ( 1r ` ( R RLocal ( RLReg ` R ) ) ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) |
189 |
|
eqid |
|- ( Unit ` ( R RLocal ( RLReg ` R ) ) ) = ( Unit ` ( R RLocal ( RLReg ` R ) ) ) |
190 |
134
|
crngringd |
|- ( ph -> ( R RLocal ( RLReg ` R ) ) e. Ring ) |
191 |
131 187 188 132 189 190
|
isdrng4 |
|- ( ph -> ( ( R RLocal ( RLReg ` R ) ) e. DivRing <-> ( ( 1r ` ( R RLocal ( RLReg ` R ) ) ) =/= ( 0g ` ( R RLocal ( RLReg ` R ) ) ) /\ A. x e. ( ( Base ` ( R RLocal ( RLReg ` R ) ) ) \ { ( 0g ` ( R RLocal ( RLReg ` R ) ) ) } ) E. y e. ( Base ` ( R RLocal ( RLReg ` R ) ) ) ( ( x ( .r ` ( R RLocal ( RLReg ` R ) ) ) y ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) /\ ( y ( .r ` ( R RLocal ( RLReg ` R ) ) ) x ) = ( 1r ` ( R RLocal ( RLReg ` R ) ) ) ) ) ) ) |
192 |
86 186 191
|
mpbir2and |
|- ( ph -> ( R RLocal ( RLReg ` R ) ) e. DivRing ) |
193 |
|
isfld |
|- ( ( R RLocal ( RLReg ` R ) ) e. Field <-> ( ( R RLocal ( RLReg ` R ) ) e. DivRing /\ ( R RLocal ( RLReg ` R ) ) e. CRing ) ) |
194 |
192 134 193
|
sylanbrc |
|- ( ph -> ( R RLocal ( RLReg ` R ) ) e. Field ) |
195 |
2 194
|
eqeltrid |
|- ( ph -> ( Frac ` R ) e. Field ) |