| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idomsubr.1 |  |-  ( ph -> R e. IDomn ) | 
						
							| 2 |  | fveq2 |  |-  ( f = ( Frac ` R ) -> ( SubRing ` f ) = ( SubRing ` ( Frac ` R ) ) ) | 
						
							| 3 |  | oveq1 |  |-  ( f = ( Frac ` R ) -> ( f |`s s ) = ( ( Frac ` R ) |`s s ) ) | 
						
							| 4 | 3 | breq2d |  |-  ( f = ( Frac ` R ) -> ( R ~=r ( f |`s s ) <-> R ~=r ( ( Frac ` R ) |`s s ) ) ) | 
						
							| 5 | 2 4 | rexeqbidv |  |-  ( f = ( Frac ` R ) -> ( E. s e. ( SubRing ` f ) R ~=r ( f |`s s ) <-> E. s e. ( SubRing ` ( Frac ` R ) ) R ~=r ( ( Frac ` R ) |`s s ) ) ) | 
						
							| 6 | 1 | fracfld |  |-  ( ph -> ( Frac ` R ) e. Field ) | 
						
							| 7 |  | oveq2 |  |-  ( s = ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( ( Frac ` R ) |`s s ) = ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( s = ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) -> ( R ~=r ( ( Frac ` R ) |`s s ) <-> R ~=r ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 |  | eqid |  |-  ( RLReg ` R ) = ( RLReg ` R ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 12 | 1 | idomcringd |  |-  ( ph -> R e. CRing ) | 
						
							| 13 |  | eqid |  |-  ( R ~RL ( RLReg ` R ) ) = ( R ~RL ( RLReg ` R ) ) | 
						
							| 14 |  | opeq1 |  |-  ( x = y -> <. x , ( 1r ` R ) >. = <. y , ( 1r ` R ) >. ) | 
						
							| 15 | 14 | eceq1d |  |-  ( x = y -> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) = [ <. y , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 16 | 15 | cbvmptv |  |-  ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) = ( y e. ( Base ` R ) |-> [ <. y , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) | 
						
							| 17 | 9 10 11 12 13 16 | fracf1 |  |-  ( ph -> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) /\ ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) ) ) | 
						
							| 18 |  | rnrhmsubrg |  |-  ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) ) | 
						
							| 19 | 17 18 | simpl2im |  |-  ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) ) | 
						
							| 20 |  | ssidd |  |-  ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 21 | 17 | simprd |  |-  ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) ) | 
						
							| 22 |  | eqid |  |-  ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) = ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 23 | 22 | resrhm2b |  |-  ( ( ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) /\ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) -> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) <-> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( ( ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( SubRing ` ( Frac ` R ) ) /\ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) /\ ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( Frac ` R ) ) ) -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) | 
						
							| 25 | 19 20 21 24 | syl21anc |  |-  ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) | 
						
							| 26 | 17 | simpld |  |-  ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 27 |  | f1f1orn |  |-  ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 29 |  | f1f |  |-  ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) --> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 30 | 26 29 | syl |  |-  ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) --> ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 31 | 30 | frnd |  |-  ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) ) | 
						
							| 32 |  | eqid |  |-  ( Frac ` R ) = ( Frac ` R ) | 
						
							| 33 | 9 10 32 13 | fracbas |  |-  ( ( ( Base ` R ) X. ( RLReg ` R ) ) /. ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( Frac ` R ) ) | 
						
							| 34 | 31 33 | sseqtrdi |  |-  ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ( Base ` ( Frac ` R ) ) ) | 
						
							| 35 |  | eqid |  |-  ( Base ` ( Frac ` R ) ) = ( Base ` ( Frac ` R ) ) | 
						
							| 36 | 22 35 | ressbas2 |  |-  ( ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) C_ ( Base ` ( Frac ` R ) ) -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) | 
						
							| 37 | 34 36 | syl |  |-  ( ph -> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) = ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) | 
						
							| 38 | 37 | f1oeq3d |  |-  ( ph -> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) <-> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) ) | 
						
							| 39 | 28 38 | mpbid |  |-  ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) | 
						
							| 40 |  | eqid |  |-  ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) = ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) | 
						
							| 41 | 9 40 | isrim |  |-  ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingIso ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) <-> ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingHom ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) /\ ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) : ( Base ` R ) -1-1-onto-> ( Base ` ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) ) | 
						
							| 42 | 25 39 41 | sylanbrc |  |-  ( ph -> ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingIso ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) ) | 
						
							| 43 |  | brrici |  |-  ( ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) e. ( R RingIso ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) -> R ~=r ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> R ~=r ( ( Frac ` R ) |`s ran ( x e. ( Base ` R ) |-> [ <. x , ( 1r ` R ) >. ] ( R ~RL ( RLReg ` R ) ) ) ) ) | 
						
							| 45 | 8 19 44 | rspcedvdw |  |-  ( ph -> E. s e. ( SubRing ` ( Frac ` R ) ) R ~=r ( ( Frac ` R ) |`s s ) ) | 
						
							| 46 | 5 6 45 | rspcedvdw |  |-  ( ph -> E. f e. Field E. s e. ( SubRing ` f ) R ~=r ( f |`s s ) ) |