| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fracbas.1 |
|- B = ( Base ` R ) |
| 2 |
|
fracbas.2 |
|- E = ( RLReg ` R ) |
| 3 |
|
fracbas.3 |
|- F = ( Frac ` R ) |
| 4 |
|
fracbas.4 |
|- .~ = ( R ~RL E ) |
| 5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 7 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 8 |
|
eqid |
|- ( B X. E ) = ( B X. E ) |
| 9 |
|
fracval |
|- ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) |
| 10 |
2
|
oveq2i |
|- ( R RLocal E ) = ( R RLocal ( RLReg ` R ) ) |
| 11 |
9 3 10
|
3eqtr4i |
|- F = ( R RLocal E ) |
| 12 |
|
id |
|- ( R e. _V -> R e. _V ) |
| 13 |
2 1
|
rrgss |
|- E C_ B |
| 14 |
13
|
a1i |
|- ( R e. _V -> E C_ B ) |
| 15 |
1 5 6 7 8 11 4 12 14
|
rlocbas |
|- ( R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) ) |
| 16 |
|
0qs |
|- ( (/) /. .~ ) = (/) |
| 17 |
|
fvprc |
|- ( -. R e. _V -> ( Base ` R ) = (/) ) |
| 18 |
1 17
|
eqtrid |
|- ( -. R e. _V -> B = (/) ) |
| 19 |
18
|
xpeq1d |
|- ( -. R e. _V -> ( B X. E ) = ( (/) X. E ) ) |
| 20 |
|
0xp |
|- ( (/) X. E ) = (/) |
| 21 |
19 20
|
eqtrdi |
|- ( -. R e. _V -> ( B X. E ) = (/) ) |
| 22 |
21
|
qseq1d |
|- ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( (/) /. .~ ) ) |
| 23 |
|
fvprc |
|- ( -. R e. _V -> ( Frac ` R ) = (/) ) |
| 24 |
3 23
|
eqtrid |
|- ( -. R e. _V -> F = (/) ) |
| 25 |
24
|
fveq2d |
|- ( -. R e. _V -> ( Base ` F ) = ( Base ` (/) ) ) |
| 26 |
|
base0 |
|- (/) = ( Base ` (/) ) |
| 27 |
25 26
|
eqtr4di |
|- ( -. R e. _V -> ( Base ` F ) = (/) ) |
| 28 |
16 22 27
|
3eqtr4a |
|- ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) ) |
| 29 |
15 28
|
pm2.61i |
|- ( ( B X. E ) /. .~ ) = ( Base ` F ) |