| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fracbas.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | fracbas.2 |  |-  E = ( RLReg ` R ) | 
						
							| 3 |  | fracbas.3 |  |-  F = ( Frac ` R ) | 
						
							| 4 |  | fracbas.4 |  |-  .~ = ( R ~RL E ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 6 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 7 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 8 |  | eqid |  |-  ( B X. E ) = ( B X. E ) | 
						
							| 9 |  | fracval |  |-  ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) | 
						
							| 10 | 2 | oveq2i |  |-  ( R RLocal E ) = ( R RLocal ( RLReg ` R ) ) | 
						
							| 11 | 9 3 10 | 3eqtr4i |  |-  F = ( R RLocal E ) | 
						
							| 12 |  | id |  |-  ( R e. _V -> R e. _V ) | 
						
							| 13 | 2 1 | rrgss |  |-  E C_ B | 
						
							| 14 | 13 | a1i |  |-  ( R e. _V -> E C_ B ) | 
						
							| 15 | 1 5 6 7 8 11 4 12 14 | rlocbas |  |-  ( R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) ) | 
						
							| 16 |  | 0qs |  |-  ( (/) /. .~ ) = (/) | 
						
							| 17 |  | fvprc |  |-  ( -. R e. _V -> ( Base ` R ) = (/) ) | 
						
							| 18 | 1 17 | eqtrid |  |-  ( -. R e. _V -> B = (/) ) | 
						
							| 19 | 18 | xpeq1d |  |-  ( -. R e. _V -> ( B X. E ) = ( (/) X. E ) ) | 
						
							| 20 |  | 0xp |  |-  ( (/) X. E ) = (/) | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( -. R e. _V -> ( B X. E ) = (/) ) | 
						
							| 22 | 21 | qseq1d |  |-  ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( (/) /. .~ ) ) | 
						
							| 23 |  | fvprc |  |-  ( -. R e. _V -> ( Frac ` R ) = (/) ) | 
						
							| 24 | 3 23 | eqtrid |  |-  ( -. R e. _V -> F = (/) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( -. R e. _V -> ( Base ` F ) = ( Base ` (/) ) ) | 
						
							| 26 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 27 | 25 26 | eqtr4di |  |-  ( -. R e. _V -> ( Base ` F ) = (/) ) | 
						
							| 28 | 16 22 27 | 3eqtr4a |  |-  ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) ) | 
						
							| 29 | 15 28 | pm2.61i |  |-  ( ( B X. E ) /. .~ ) = ( Base ` F ) |