Metamath Proof Explorer


Theorem fracbas

Description: The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses fracbas.1 B = Base R
fracbas.2 E = RLReg R
fracbas.3 F = Frac R
fracbas.4 ˙ = R ~RL E
Assertion fracbas B × E / ˙ = Base F

Proof

Step Hyp Ref Expression
1 fracbas.1 B = Base R
2 fracbas.2 E = RLReg R
3 fracbas.3 F = Frac R
4 fracbas.4 ˙ = R ~RL E
5 eqid 0 R = 0 R
6 eqid R = R
7 eqid - R = - R
8 eqid B × E = B × E
9 fracval Frac R = R RLocal RLReg R
10 2 oveq2i R RLocal E = R RLocal RLReg R
11 9 3 10 3eqtr4i F = R RLocal E
12 id R V R V
13 2 1 rrgss E B
14 13 a1i R V E B
15 1 5 6 7 8 11 4 12 14 rlocbas R V B × E / ˙ = Base F
16 0qs / ˙ =
17 fvprc ¬ R V Base R =
18 1 17 eqtrid ¬ R V B =
19 18 xpeq1d ¬ R V B × E = × E
20 0xp × E =
21 19 20 eqtrdi ¬ R V B × E =
22 21 qseq1d ¬ R V B × E / ˙ = / ˙
23 fvprc ¬ R V Frac R =
24 3 23 eqtrid ¬ R V F =
25 24 fveq2d ¬ R V Base F = Base
26 base0 = Base
27 25 26 eqtr4di ¬ R V Base F =
28 16 22 27 3eqtr4a ¬ R V B × E / ˙ = Base F
29 15 28 pm2.61i B × E / ˙ = Base F