Metamath Proof Explorer


Theorem idomsubr

Description: Every integral domain is isomorphic with a subring of some field. (Proposed by Gerard Lang, 10-May-2025.) (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypothesis idomsubr.1 φ R IDomn
Assertion idomsubr φ f Field s SubRing f R 𝑟 f 𝑠 s

Proof

Step Hyp Ref Expression
1 idomsubr.1 φ R IDomn
2 fveq2 f = Frac R SubRing f = SubRing Frac R
3 oveq1 f = Frac R f 𝑠 s = Frac R 𝑠 s
4 3 breq2d f = Frac R R 𝑟 f 𝑠 s R 𝑟 Frac R 𝑠 s
5 2 4 rexeqbidv f = Frac R s SubRing f R 𝑟 f 𝑠 s s SubRing Frac R R 𝑟 Frac R 𝑠 s
6 1 fracfld φ Frac R Field
7 oveq2 s = ran x Base R x 1 R R ~RL RLReg R Frac R 𝑠 s = Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
8 7 breq2d s = ran x Base R x 1 R R ~RL RLReg R R 𝑟 Frac R 𝑠 s R 𝑟 Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
9 eqid Base R = Base R
10 eqid RLReg R = RLReg R
11 eqid 1 R = 1 R
12 1 idomcringd φ R CRing
13 eqid R ~RL RLReg R = R ~RL RLReg R
14 opeq1 x = y x 1 R = y 1 R
15 14 eceq1d x = y x 1 R R ~RL RLReg R = y 1 R R ~RL RLReg R
16 15 cbvmptv x Base R x 1 R R ~RL RLReg R = y Base R y 1 R R ~RL RLReg R
17 9 10 11 12 13 16 fracf1 φ x Base R x 1 R R ~RL RLReg R : Base R 1-1 Base R × RLReg R / R ~RL RLReg R x Base R x 1 R R ~RL RLReg R R RingHom Frac R
18 rnrhmsubrg x Base R x 1 R R ~RL RLReg R R RingHom Frac R ran x Base R x 1 R R ~RL RLReg R SubRing Frac R
19 17 18 simpl2im φ ran x Base R x 1 R R ~RL RLReg R SubRing Frac R
20 ssidd φ ran x Base R x 1 R R ~RL RLReg R ran x Base R x 1 R R ~RL RLReg R
21 17 simprd φ x Base R x 1 R R ~RL RLReg R R RingHom Frac R
22 eqid Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R = Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
23 22 resrhm2b ran x Base R x 1 R R ~RL RLReg R SubRing Frac R ran x Base R x 1 R R ~RL RLReg R ran x Base R x 1 R R ~RL RLReg R x Base R x 1 R R ~RL RLReg R R RingHom Frac R x Base R x 1 R R ~RL RLReg R R RingHom Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
24 23 biimpa ran x Base R x 1 R R ~RL RLReg R SubRing Frac R ran x Base R x 1 R R ~RL RLReg R ran x Base R x 1 R R ~RL RLReg R x Base R x 1 R R ~RL RLReg R R RingHom Frac R x Base R x 1 R R ~RL RLReg R R RingHom Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
25 19 20 21 24 syl21anc φ x Base R x 1 R R ~RL RLReg R R RingHom Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
26 17 simpld φ x Base R x 1 R R ~RL RLReg R : Base R 1-1 Base R × RLReg R / R ~RL RLReg R
27 f1f1orn x Base R x 1 R R ~RL RLReg R : Base R 1-1 Base R × RLReg R / R ~RL RLReg R x Base R x 1 R R ~RL RLReg R : Base R 1-1 onto ran x Base R x 1 R R ~RL RLReg R
28 26 27 syl φ x Base R x 1 R R ~RL RLReg R : Base R 1-1 onto ran x Base R x 1 R R ~RL RLReg R
29 f1f x Base R x 1 R R ~RL RLReg R : Base R 1-1 Base R × RLReg R / R ~RL RLReg R x Base R x 1 R R ~RL RLReg R : Base R Base R × RLReg R / R ~RL RLReg R
30 26 29 syl φ x Base R x 1 R R ~RL RLReg R : Base R Base R × RLReg R / R ~RL RLReg R
31 30 frnd φ ran x Base R x 1 R R ~RL RLReg R Base R × RLReg R / R ~RL RLReg R
32 eqid Frac R = Frac R
33 9 10 32 13 fracbas Base R × RLReg R / R ~RL RLReg R = Base Frac R
34 31 33 sseqtrdi φ ran x Base R x 1 R R ~RL RLReg R Base Frac R
35 eqid Base Frac R = Base Frac R
36 22 35 ressbas2 ran x Base R x 1 R R ~RL RLReg R Base Frac R ran x Base R x 1 R R ~RL RLReg R = Base Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
37 34 36 syl φ ran x Base R x 1 R R ~RL RLReg R = Base Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
38 37 f1oeq3d φ x Base R x 1 R R ~RL RLReg R : Base R 1-1 onto ran x Base R x 1 R R ~RL RLReg R x Base R x 1 R R ~RL RLReg R : Base R 1-1 onto Base Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
39 28 38 mpbid φ x Base R x 1 R R ~RL RLReg R : Base R 1-1 onto Base Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
40 eqid Base Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R = Base Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
41 9 40 isrim x Base R x 1 R R ~RL RLReg R R RingIso Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R x Base R x 1 R R ~RL RLReg R R RingHom Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R x Base R x 1 R R ~RL RLReg R : Base R 1-1 onto Base Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
42 25 39 41 sylanbrc φ x Base R x 1 R R ~RL RLReg R R RingIso Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
43 brrici x Base R x 1 R R ~RL RLReg R R RingIso Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R R 𝑟 Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
44 42 43 syl φ R 𝑟 Frac R 𝑠 ran x Base R x 1 R R ~RL RLReg R
45 8 19 44 rspcedvdw φ s SubRing Frac R R 𝑟 Frac R 𝑠 s
46 5 6 45 rspcedvdw φ f Field s SubRing f R 𝑟 f 𝑠 s