Metamath Proof Explorer


Theorem fracfld

Description: The field of fractions of an integral domain is a field. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypothesis fracfld.1 φ R IDomn
Assertion fracfld φ Frac R Field

Proof

Step Hyp Ref Expression
1 fracfld.1 φ R IDomn
2 fracval Frac R = R RLocal RLReg R
3 1 idomdomd φ R Domn
4 domnnzr R Domn R NzRing
5 eqid 1 R = 1 R
6 eqid 0 R = 0 R
7 5 6 nzrnz R NzRing 1 R 0 R
8 3 4 7 3syl φ 1 R 0 R
9 fvex 1 R V
10 9 9 op1st 1 st 1 R 1 R = 1 R
11 10 a1i φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 st 1 R 1 R = 1 R
12 fvex 0 R V
13 12 9 op2nd 2 nd 0 R 1 R = 1 R
14 13 a1i φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 2 nd 0 R 1 R = 1 R
15 11 14 oveq12d φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 st 1 R 1 R R 2 nd 0 R 1 R = 1 R R 1 R
16 eqid Base R = Base R
17 eqid R = R
18 1 idomringd φ R Ring
19 18 ad2antrr φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R R Ring
20 16 5 ringidcl R Ring 1 R Base R
21 19 20 syl φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 R Base R
22 16 17 5 19 21 ringlidmd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 R R 1 R = 1 R
23 15 22 eqtrd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 st 1 R 1 R R 2 nd 0 R 1 R = 1 R
24 12 9 op1st 1 st 0 R 1 R = 0 R
25 24 a1i φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 st 0 R 1 R = 0 R
26 9 9 op2nd 2 nd 1 R 1 R = 1 R
27 26 a1i φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 2 nd 1 R 1 R = 1 R
28 25 27 oveq12d φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 st 0 R 1 R R 2 nd 1 R 1 R = 0 R R 1 R
29 18 ringgrpd φ R Grp
30 16 6 grpidcl R Grp 0 R Base R
31 29 30 syl φ 0 R Base R
32 31 ad2antrr φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 0 R Base R
33 16 17 5 19 32 ringridmd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 0 R R 1 R = 0 R
34 28 33 eqtrd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 st 0 R 1 R R 2 nd 1 R 1 R = 0 R
35 23 34 oveq12d φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = 1 R - R 0 R
36 35 oveq2d φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = t R 1 R - R 0 R
37 eqid - R = - R
38 eqid RLReg R = RLReg R
39 38 16 rrgss RLReg R Base R
40 39 a1i φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R RLReg R Base R
41 40 sselda φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t Base R
42 16 17 37 19 41 21 32 ringsubdi φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 R - R 0 R = t R 1 R - R t R 0 R
43 16 17 5 19 41 ringridmd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 R = t
44 16 17 6 19 41 ringrzd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 0 R = 0 R
45 43 44 oveq12d φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 R - R t R 0 R = t - R 0 R
46 29 ad2antrr φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R R Grp
47 16 6 37 grpsubid1 R Grp t Base R t - R 0 R = t
48 46 41 47 syl2anc φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t - R 0 R = t
49 45 48 eqtrd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 R - R t R 0 R = t
50 36 42 49 3eqtrd φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = t
51 50 eqeq1d φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = 0 R t = 0 R
52 51 biimpa φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = 0 R t = 0 R
53 simpr φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t RLReg R
54 38 6 rrgnz R NzRing ¬ 0 R RLReg R
55 3 4 54 3syl φ ¬ 0 R RLReg R
56 55 ad2antrr φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R ¬ 0 R RLReg R
57 nelne2 t RLReg R ¬ 0 R RLReg R t 0 R
58 53 56 57 syl2anc φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t 0 R
59 58 adantr φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = 0 R t 0 R
60 52 59 pm2.21ddne φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = 0 R 1 R = 0 R
61 eqid R ~RL RLReg R = R ~RL RLReg R
62 eqid Base R × RLReg R = Base R × RLReg R
63 1 idomcringd φ R CRing
64 16 38 6 isdomn6 R Domn R NzRing Base R 0 R = RLReg R
65 3 64 sylib φ R NzRing Base R 0 R = RLReg R
66 65 simprd φ Base R 0 R = RLReg R
67 eqid mulGrp R = mulGrp R
68 16 6 67 isdomn3 R Domn R Ring Base R 0 R SubMnd mulGrp R
69 3 68 sylib φ R Ring Base R 0 R SubMnd mulGrp R
70 69 simprd φ Base R 0 R SubMnd mulGrp R
71 66 70 eqeltrrd φ RLReg R SubMnd mulGrp R
72 16 6 5 17 37 62 61 63 71 erler φ R ~RL RLReg R Er Base R × RLReg R
73 18 20 syl φ 1 R Base R
74 5 38 18 1rrg φ 1 R RLReg R
75 73 74 opelxpd φ 1 R 1 R Base R × RLReg R
76 72 75 erth φ 1 R 1 R R ~RL RLReg R 0 R 1 R 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R
77 76 biimpar φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R 1 R 1 R R ~RL RLReg R 0 R 1 R
78 16 61 40 6 17 37 77 erldi φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R t RLReg R t R 1 st 1 R 1 R R 2 nd 0 R 1 R - R 1 st 0 R 1 R R 2 nd 1 R 1 R = 0 R
79 60 78 r19.29a φ 1 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R 1 R = 0 R
80 8 79 mteqand φ 1 R 1 R R ~RL RLReg R 0 R 1 R R ~RL RLReg R
81 eqid R RLocal RLReg R = R RLocal RLReg R
82 eqid 1 R 1 R R ~RL RLReg R = 1 R 1 R R ~RL RLReg R
83 6 5 81 61 63 71 82 rloc1r φ 1 R 1 R R ~RL RLReg R = 1 R RLocal RLReg R
84 eqid 0 R 1 R R ~RL RLReg R = 0 R 1 R R ~RL RLReg R
85 6 5 81 61 63 71 84 rloc0g φ 0 R 1 R R ~RL RLReg R = 0 R RLocal RLReg R
86 80 83 85 3netr3d φ 1 R RLocal RLReg R 0 R RLocal RLReg R
87 oveq2 y = b a R ~RL RLReg R x R RLocal RLReg R y = x R RLocal RLReg R b a R ~RL RLReg R
88 87 eqeq1d y = b a R ~RL RLReg R x R RLocal RLReg R y = 1 R RLocal RLReg R x R RLocal RLReg R b a R ~RL RLReg R = 1 R RLocal RLReg R
89 oveq1 y = b a R ~RL RLReg R y R RLocal RLReg R x = b a R ~RL RLReg R R RLocal RLReg R x
90 89 eqeq1d y = b a R ~RL RLReg R y R RLocal RLReg R x = 1 R RLocal RLReg R b a R ~RL RLReg R R RLocal RLReg R x = 1 R RLocal RLReg R
91 88 90 anbi12d y = b a R ~RL RLReg R x R RLocal RLReg R y = 1 R RLocal RLReg R y R RLocal RLReg R x = 1 R RLocal RLReg R x R RLocal RLReg R b a R ~RL RLReg R = 1 R RLocal RLReg R b a R ~RL RLReg R R RLocal RLReg R x = 1 R RLocal RLReg R
92 simplr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b RLReg R
93 39 92 sselid φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b Base R
94 simpllr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a Base R
95 simplr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R x = a b R ~RL RLReg R
96 72 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R R ~RL RLReg R Er Base R × RLReg R
97 18 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R R Ring
98 97 20 syl φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R 1 R Base R
99 16 17 6 97 98 ringlzd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R 0 R R 1 R = 0 R
100 simpr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R a = 0 R
101 100 oveq1d φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R a R 1 R = 0 R R 1 R
102 93 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R b Base R
103 16 17 6 97 102 ringlzd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R 0 R R b = 0 R
104 99 101 103 3eqtr4d φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R a R 1 R = 0 R R b
105 63 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R R CRing
106 94 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R a Base R
107 31 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R 0 R Base R
108 92 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R b RLReg R
109 74 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R 1 R RLReg R
110 16 17 61 105 106 107 108 109 fracerl φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R a b R ~RL RLReg R 0 R 1 R a R 1 R = 0 R R b
111 104 110 mpbird φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R a b R ~RL RLReg R 0 R 1 R
112 96 111 erthi φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R a b R ~RL RLReg R = 0 R 1 R R ~RL RLReg R
113 85 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R 0 R 1 R R ~RL RLReg R = 0 R RLocal RLReg R
114 95 112 113 3eqtrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R x = 0 R RLocal RLReg R
115 eldifsni x Base R RLocal RLReg R 0 R RLocal RLReg R x 0 R RLocal RLReg R
116 115 ad5antlr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R x 0 R RLocal RLReg R
117 116 neneqd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a = 0 R ¬ x = 0 R RLocal RLReg R
118 114 117 pm2.65da φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R ¬ a = 0 R
119 118 neqned φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a 0 R
120 94 119 eldifsnd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a Base R 0 R
121 66 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R Base R 0 R = RLReg R
122 120 121 eleqtrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a RLReg R
123 93 122 opelxpd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b a Base R × RLReg R
124 ovex R ~RL RLReg R V
125 124 ecelqsi b a Base R × RLReg R b a R ~RL RLReg R Base R × RLReg R / R ~RL RLReg R
126 123 125 syl φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b a R ~RL RLReg R Base R × RLReg R / R ~RL RLReg R
127 39 a1i φ RLReg R Base R
128 16 6 17 37 62 81 61 1 127 rlocbas φ Base R × RLReg R / R ~RL RLReg R = Base R RLocal RLReg R
129 128 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R Base R × RLReg R / R ~RL RLReg R = Base R RLocal RLReg R
130 126 129 eleqtrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b a R ~RL RLReg R Base R RLocal RLReg R
131 eqid Base R RLocal RLReg R = Base R RLocal RLReg R
132 eqid R RLocal RLReg R = R RLocal RLReg R
133 eqid + R = + R
134 16 17 133 81 61 63 71 rloccring φ R RLocal RLReg R CRing
135 134 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R R RLocal RLReg R CRing
136 simp-4r φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R x Base R RLocal RLReg R 0 R RLocal RLReg R
137 136 eldifad φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R x Base R RLocal RLReg R
138 131 132 135 137 130 crngcomd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R x R RLocal RLReg R b a R ~RL RLReg R = b a R ~RL RLReg R R RLocal RLReg R x
139 simpr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R x = a b R ~RL RLReg R
140 139 oveq2d φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b a R ~RL RLReg R R RLocal RLReg R x = b a R ~RL RLReg R R RLocal RLReg R a b R ~RL RLReg R
141 63 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R R CRing
142 71 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R RLReg R SubMnd mulGrp R
143 16 17 133 81 61 141 142 93 94 122 92 132 rlocmulval φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b a R ~RL RLReg R R RLocal RLReg R a b R ~RL RLReg R = b R a a R b R ~RL RLReg R
144 72 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R R ~RL RLReg R Er Base R × RLReg R
145 16 17 141 93 94 crngcomd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b R a = a R b
146 18 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R R Ring
147 16 17 146 93 94 ringcld φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b R a Base R
148 16 17 5 146 147 ringridmd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b R a R 1 R = b R a
149 16 17 146 94 93 ringcld φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b Base R
150 16 17 5 146 149 ringlidmd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R 1 R R a R b = a R b
151 145 148 150 3eqtr4d φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b R a R 1 R = 1 R R a R b
152 73 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R 1 R Base R
153 94 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R a Base R
154 31 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R 0 R Base R
155 92 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R b RLReg R
156 66 ad5antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R Base R 0 R = RLReg R
157 155 156 eleqtrrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R b Base R 0 R
158 1 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R R IDomn
159 158 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R R IDomn
160 simpr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R a R b = 0 R
161 146 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R R Ring
162 93 adantr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R b Base R
163 16 17 6 161 162 ringlzd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R 0 R R b = 0 R
164 160 163 eqtr4d φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R a R b = 0 R R b
165 16 6 17 153 154 157 159 164 idomrcan φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b = 0 R a = 0 R
166 118 165 mtand φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R ¬ a R b = 0 R
167 166 neqned φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b 0 R
168 149 167 eldifsnd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b Base R 0 R
169 168 121 eleqtrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R a R b RLReg R
170 74 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R 1 R RLReg R
171 16 17 61 141 147 152 169 170 fracerl φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b R a a R b R ~RL RLReg R 1 R 1 R b R a R 1 R = 1 R R a R b
172 151 171 mpbird φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b R a a R b R ~RL RLReg R 1 R 1 R
173 144 172 erthi φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b R a a R b R ~RL RLReg R = 1 R 1 R R ~RL RLReg R
174 143 173 eqtrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b a R ~RL RLReg R R RLocal RLReg R a b R ~RL RLReg R = 1 R 1 R R ~RL RLReg R
175 83 ad4antr φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R 1 R 1 R R ~RL RLReg R = 1 R RLocal RLReg R
176 140 174 175 3eqtrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R b a R ~RL RLReg R R RLocal RLReg R x = 1 R RLocal RLReg R
177 138 176 eqtrd φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R x R RLocal RLReg R b a R ~RL RLReg R = 1 R RLocal RLReg R
178 177 176 jca φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R x R RLocal RLReg R b a R ~RL RLReg R = 1 R RLocal RLReg R b a R ~RL RLReg R R RLocal RLReg R x = 1 R RLocal RLReg R
179 91 130 178 rspcedvdw φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R y Base R RLocal RLReg R x R RLocal RLReg R y = 1 R RLocal RLReg R y R RLocal RLReg R x = 1 R RLocal RLReg R
180 128 difeq1d φ Base R × RLReg R / R ~RL RLReg R 0 R RLocal RLReg R = Base R RLocal RLReg R 0 R RLocal RLReg R
181 180 eleq2d φ x Base R × RLReg R / R ~RL RLReg R 0 R RLocal RLReg R x Base R RLocal RLReg R 0 R RLocal RLReg R
182 181 biimpar φ x Base R RLocal RLReg R 0 R RLocal RLReg R x Base R × RLReg R / R ~RL RLReg R 0 R RLocal RLReg R
183 182 eldifad φ x Base R RLocal RLReg R 0 R RLocal RLReg R x Base R × RLReg R / R ~RL RLReg R
184 183 elrlocbasi φ x Base R RLocal RLReg R 0 R RLocal RLReg R a Base R b RLReg R x = a b R ~RL RLReg R
185 179 184 r19.29vva φ x Base R RLocal RLReg R 0 R RLocal RLReg R y Base R RLocal RLReg R x R RLocal RLReg R y = 1 R RLocal RLReg R y R RLocal RLReg R x = 1 R RLocal RLReg R
186 185 ralrimiva φ x Base R RLocal RLReg R 0 R RLocal RLReg R y Base R RLocal RLReg R x R RLocal RLReg R y = 1 R RLocal RLReg R y R RLocal RLReg R x = 1 R RLocal RLReg R
187 eqid 0 R RLocal RLReg R = 0 R RLocal RLReg R
188 eqid 1 R RLocal RLReg R = 1 R RLocal RLReg R
189 eqid Unit R RLocal RLReg R = Unit R RLocal RLReg R
190 134 crngringd φ R RLocal RLReg R Ring
191 131 187 188 132 189 190 isdrng4 φ R RLocal RLReg R DivRing 1 R RLocal RLReg R 0 R RLocal RLReg R x Base R RLocal RLReg R 0 R RLocal RLReg R y Base R RLocal RLReg R x R RLocal RLReg R y = 1 R RLocal RLReg R y R RLocal RLReg R x = 1 R RLocal RLReg R
192 86 186 191 mpbir2and φ R RLocal RLReg R DivRing
193 isfld R RLocal RLReg R Field R RLocal RLReg R DivRing R RLocal RLReg R CRing
194 192 134 193 sylanbrc φ R RLocal RLReg R Field
195 2 194 eqeltrid φ Frac R Field