Metamath Proof Explorer


Theorem erldi

Description: Main property of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses erlcl1.b B = Base R
erlcl1.e ˙ = R ~RL S
erlcl1.s φ S B
erldi.1 0 ˙ = 0 R
erldi.2 · ˙ = R
erldi.3 - ˙ = - R
erldi.4 φ U ˙ V
Assertion erldi φ t S t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U = 0 ˙

Proof

Step Hyp Ref Expression
1 erlcl1.b B = Base R
2 erlcl1.e ˙ = R ~RL S
3 erlcl1.s φ S B
4 erldi.1 0 ˙ = 0 R
5 erldi.2 · ˙ = R
6 erldi.3 - ˙ = - R
7 erldi.4 φ U ˙ V
8 eqid B × S = B × S
9 eqid a b | a B × S b B × S t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ = a b | a B × S b B × S t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
10 1 4 5 6 8 9 3 erlval φ R ~RL S = a b | a B × S b B × S t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
11 2 10 eqtrid φ ˙ = a b | a B × S b B × S t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
12 simpl a = U b = V a = U
13 12 fveq2d a = U b = V 1 st a = 1 st U
14 simpr a = U b = V b = V
15 14 fveq2d a = U b = V 2 nd b = 2 nd V
16 13 15 oveq12d a = U b = V 1 st a · ˙ 2 nd b = 1 st U · ˙ 2 nd V
17 14 fveq2d a = U b = V 1 st b = 1 st V
18 12 fveq2d a = U b = V 2 nd a = 2 nd U
19 17 18 oveq12d a = U b = V 1 st b · ˙ 2 nd a = 1 st V · ˙ 2 nd U
20 16 19 oveq12d a = U b = V 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U
21 20 oveq2d a = U b = V t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U
22 21 eqeq1d a = U b = V t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U = 0 ˙
23 22 rexbidv a = U b = V t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ t S t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U = 0 ˙
24 23 adantl φ a = U b = V t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ t S t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U = 0 ˙
25 11 24 brab2d φ U ˙ V U B × S V B × S t S t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U = 0 ˙
26 7 25 mpbid φ U B × S V B × S t S t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U = 0 ˙
27 26 simprd φ t S t · ˙ 1 st U · ˙ 2 nd V - ˙ 1 st V · ˙ 2 nd U = 0 ˙