| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlocval.1 |
|
| 2 |
|
rlocval.2 |
|
| 3 |
|
rlocval.3 |
|
| 4 |
|
rlocval.4 |
|
| 5 |
|
erlval.w |
|
| 6 |
|
erlval.q |
|
| 7 |
|
erlval.20 |
|
| 8 |
|
simpr |
|
| 9 |
1
|
fvexi |
|
| 10 |
9
|
a1i |
|
| 11 |
7
|
adantr |
|
| 12 |
10 11
|
ssexd |
|
| 13 |
10 12
|
xpexd |
|
| 14 |
5 13
|
eqeltrid |
|
| 15 |
14 14
|
xpexd |
|
| 16 |
|
simprll |
|
| 17 |
|
simprlr |
|
| 18 |
16 17
|
opabssxpd |
|
| 19 |
18
|
adantr |
|
| 20 |
15 19
|
ssexd |
|
| 21 |
6 20
|
eqeltrid |
|
| 22 |
|
fvexd |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
adantr |
|
| 25 |
24 3
|
eqtr4di |
|
| 26 |
|
fvexd |
|
| 27 |
|
vex |
|
| 28 |
27
|
a1i |
|
| 29 |
26 28
|
xpexd |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
31 1
|
eqtr4di |
|
| 33 |
|
simplr |
|
| 34 |
32 33
|
xpeq12d |
|
| 35 |
34 5
|
eqtr4di |
|
| 36 |
|
simpr |
|
| 37 |
36
|
eleq2d |
|
| 38 |
36
|
eleq2d |
|
| 39 |
37 38
|
anbi12d |
|
| 40 |
33
|
adantr |
|
| 41 |
|
simplr |
|
| 42 |
|
eqidd |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
ad3antrrr |
|
| 45 |
44 4
|
eqtr4di |
|
| 46 |
41
|
oveqd |
|
| 47 |
41
|
oveqd |
|
| 48 |
45 46 47
|
oveq123d |
|
| 49 |
41 42 48
|
oveq123d |
|
| 50 |
|
fveq2 |
|
| 51 |
50
|
ad3antrrr |
|
| 52 |
51 2
|
eqtr4di |
|
| 53 |
49 52
|
eqeq12d |
|
| 54 |
40 53
|
rexeqbidv |
|
| 55 |
39 54
|
anbi12d |
|
| 56 |
55
|
opabbidv |
|
| 57 |
56 6
|
eqtr4di |
|
| 58 |
29 35 57
|
csbied2 |
|
| 59 |
22 25 58
|
csbied2 |
|
| 60 |
|
df-erl |
|
| 61 |
59 60
|
ovmpoga |
|
| 62 |
8 12 21 61
|
syl3anc |
|
| 63 |
60
|
reldmmpo |
|
| 64 |
63
|
ovprc1 |
|
| 65 |
64
|
adantl |
|
| 66 |
6 18
|
eqsstrid |
|
| 67 |
66
|
adantr |
|
| 68 |
|
fvprc |
|
| 69 |
1 68
|
eqtrid |
|
| 70 |
69
|
xpeq1d |
|
| 71 |
|
0xp |
|
| 72 |
70 71
|
eqtrdi |
|
| 73 |
5 72
|
eqtrid |
|
| 74 |
|
id |
|
| 75 |
74 74
|
xpeq12d |
|
| 76 |
|
0xp |
|
| 77 |
75 76
|
eqtrdi |
|
| 78 |
73 77
|
syl |
|
| 79 |
78
|
adantl |
|
| 80 |
67 79
|
sseqtrd |
|
| 81 |
|
ss0 |
|
| 82 |
80 81
|
syl |
|
| 83 |
65 82
|
eqtr4d |
|
| 84 |
62 83
|
pm2.61dan |
|