Metamath Proof Explorer


Theorem erlval

Description: Value of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses rlocval.1 B = Base R
rlocval.2 0 ˙ = 0 R
rlocval.3 · ˙ = R
rlocval.4 - ˙ = - R
erlval.w W = B × S
erlval.q ˙ = a b | a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
erlval.20 φ S B
Assertion erlval φ R ~RL S = ˙

Proof

Step Hyp Ref Expression
1 rlocval.1 B = Base R
2 rlocval.2 0 ˙ = 0 R
3 rlocval.3 · ˙ = R
4 rlocval.4 - ˙ = - R
5 erlval.w W = B × S
6 erlval.q ˙ = a b | a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
7 erlval.20 φ S B
8 simpr φ R V R V
9 1 fvexi B V
10 9 a1i φ R V B V
11 7 adantr φ R V S B
12 10 11 ssexd φ R V S V
13 10 12 xpexd φ R V B × S V
14 5 13 eqeltrid φ R V W V
15 14 14 xpexd φ R V W × W V
16 simprll φ a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ a W
17 simprlr φ a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ b W
18 16 17 opabssxpd φ a b | a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ W × W
19 18 adantr φ R V a b | a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ W × W
20 15 19 ssexd φ R V a b | a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙ V
21 6 20 eqeltrid φ R V ˙ V
22 fvexd r = R s = S r V
23 fveq2 r = R r = R
24 23 adantr r = R s = S r = R
25 24 3 eqtr4di r = R s = S r = · ˙
26 fvexd r = R s = S x = · ˙ Base r V
27 vex s V
28 27 a1i r = R s = S x = · ˙ s V
29 26 28 xpexd r = R s = S x = · ˙ Base r × s V
30 fveq2 r = R Base r = Base R
31 30 ad2antrr r = R s = S x = · ˙ Base r = Base R
32 31 1 eqtr4di r = R s = S x = · ˙ Base r = B
33 simplr r = R s = S x = · ˙ s = S
34 32 33 xpeq12d r = R s = S x = · ˙ Base r × s = B × S
35 34 5 eqtr4di r = R s = S x = · ˙ Base r × s = W
36 simpr r = R s = S x = · ˙ w = W w = W
37 36 eleq2d r = R s = S x = · ˙ w = W a w a W
38 36 eleq2d r = R s = S x = · ˙ w = W b w b W
39 37 38 anbi12d r = R s = S x = · ˙ w = W a w b w a W b W
40 33 adantr r = R s = S x = · ˙ w = W s = S
41 simplr r = R s = S x = · ˙ w = W x = · ˙
42 eqidd r = R s = S x = · ˙ w = W t = t
43 fveq2 r = R - r = - R
44 43 ad3antrrr r = R s = S x = · ˙ w = W - r = - R
45 44 4 eqtr4di r = R s = S x = · ˙ w = W - r = - ˙
46 41 oveqd r = R s = S x = · ˙ w = W 1 st a x 2 nd b = 1 st a · ˙ 2 nd b
47 41 oveqd r = R s = S x = · ˙ w = W 1 st b x 2 nd a = 1 st b · ˙ 2 nd a
48 45 46 47 oveq123d r = R s = S x = · ˙ w = W 1 st a x 2 nd b - r 1 st b x 2 nd a = 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a
49 41 42 48 oveq123d r = R s = S x = · ˙ w = W t x 1 st a x 2 nd b - r 1 st b x 2 nd a = t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a
50 fveq2 r = R 0 r = 0 R
51 50 ad3antrrr r = R s = S x = · ˙ w = W 0 r = 0 R
52 51 2 eqtr4di r = R s = S x = · ˙ w = W 0 r = 0 ˙
53 49 52 eqeq12d r = R s = S x = · ˙ w = W t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
54 40 53 rexeqbidv r = R s = S x = · ˙ w = W t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
55 39 54 anbi12d r = R s = S x = · ˙ w = W a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
56 55 opabbidv r = R s = S x = · ˙ w = W a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r = a b | a W b W t S t · ˙ 1 st a · ˙ 2 nd b - ˙ 1 st b · ˙ 2 nd a = 0 ˙
57 56 6 eqtr4di r = R s = S x = · ˙ w = W a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r = ˙
58 29 35 57 csbied2 r = R s = S x = · ˙ Base r × s / w a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r = ˙
59 22 25 58 csbied2 r = R s = S r / x Base r × s / w a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r = ˙
60 df-erl ~RL = r V , s V r / x Base r × s / w a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
61 59 60 ovmpoga R V S V ˙ V R ~RL S = ˙
62 8 12 21 61 syl3anc φ R V R ~RL S = ˙
63 60 reldmmpo Rel dom ~RL
64 63 ovprc1 ¬ R V R ~RL S =
65 64 adantl φ ¬ R V R ~RL S =
66 6 18 eqsstrid φ ˙ W × W
67 66 adantr φ ¬ R V ˙ W × W
68 fvprc ¬ R V Base R =
69 1 68 eqtrid ¬ R V B =
70 69 xpeq1d ¬ R V B × S = × S
71 0xp × S =
72 70 71 eqtrdi ¬ R V B × S =
73 5 72 eqtrid ¬ R V W =
74 id W = W =
75 74 74 xpeq12d W = W × W = ×
76 0xp × =
77 75 76 eqtrdi W = W × W =
78 73 77 syl ¬ R V W × W =
79 78 adantl φ ¬ R V W × W =
80 67 79 sseqtrd φ ¬ R V ˙
81 ss0 ˙ ˙ =
82 80 81 syl φ ¬ R V ˙ =
83 65 82 eqtr4d φ ¬ R V R ~RL S = ˙
84 62 83 pm2.61dan φ R ~RL S = ˙