| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlocval.1 |
|
| 2 |
|
rlocval.2 |
|
| 3 |
|
rlocval.3 |
|
| 4 |
|
rlocval.4 |
|
| 5 |
|
rlocval.5 |
|
| 6 |
|
rlocval.6 |
|
| 7 |
|
rlocval.7 |
|
| 8 |
|
rlocval.8 |
|
| 9 |
|
rlocval.9 |
|
| 10 |
|
rlocval.10 |
|
| 11 |
|
rlocval.11 |
|
| 12 |
|
rlocval.12 |
|
| 13 |
|
rlocval.13 |
|
| 14 |
|
rlocval.14 |
|
| 15 |
|
rlocval.15 |
|
| 16 |
|
rlocval.16 |
|
| 17 |
|
rlocval.17 |
Could not format .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } : No typesetting found for |- .c_ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ ( ( 1st ` a ) .x. ( 2nd ` b ) ) .<_ ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) } with typecode |- |
| 18 |
|
rlocval.18 |
|
| 19 |
|
rlocval.19 |
|
| 20 |
|
rlocval.20 |
|
| 21 |
19
|
elexd |
|
| 22 |
1
|
fvexi |
|
| 23 |
22
|
a1i |
|
| 24 |
23 20
|
ssexd |
|
| 25 |
|
ovexd |
Could not format ( ph -> ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) : No typesetting found for |- ( ph -> ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) with typecode |- |
| 26 |
|
fvexd |
|
| 27 |
|
fveq2 |
|
| 28 |
27
|
adantr |
|
| 29 |
28 3
|
eqtr4di |
|
| 30 |
|
fvexd |
|
| 31 |
|
vex |
|
| 32 |
31
|
a1i |
|
| 33 |
30 32
|
xpexd |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
35 1
|
eqtr4di |
|
| 37 |
|
simplr |
|
| 38 |
36 37
|
xpeq12d |
|
| 39 |
38 10
|
eqtr4di |
|
| 40 |
|
simpr |
|
| 41 |
40
|
opeq2d |
|
| 42 |
|
simplll |
|
| 43 |
42
|
fveq2d |
|
| 44 |
43 5
|
eqtr4di |
|
| 45 |
|
simplr |
|
| 46 |
45
|
oveqd |
|
| 47 |
45
|
oveqd |
|
| 48 |
44 46 47
|
oveq123d |
|
| 49 |
45
|
oveqd |
|
| 50 |
48 49
|
opeq12d |
|
| 51 |
40 40 50
|
mpoeq123dv |
|
| 52 |
51 14
|
eqtr4di |
|
| 53 |
52
|
opeq2d |
|
| 54 |
45
|
oveqd |
|
| 55 |
54 49
|
opeq12d |
|
| 56 |
40 40 55
|
mpoeq123dv |
|
| 57 |
56 15
|
eqtr4di |
|
| 58 |
57
|
opeq2d |
|
| 59 |
41 53 58
|
tpeq123d |
|
| 60 |
42
|
fveq2d |
|
| 61 |
60 7
|
eqtr4di |
|
| 62 |
61
|
opeq2d |
|
| 63 |
60
|
fveq2d |
|
| 64 |
7
|
fveq2i |
|
| 65 |
8 64
|
eqtri |
|
| 66 |
63 65
|
eqtr4di |
|
| 67 |
42
|
fveq2d |
|
| 68 |
67 9
|
eqtr4di |
|
| 69 |
68
|
oveqd |
|
| 70 |
69
|
opeq1d |
|
| 71 |
66 40 70
|
mpoeq123dv |
|
| 72 |
71 16
|
eqtr4di |
|
| 73 |
72
|
opeq2d |
|
| 74 |
|
eqidd |
|
| 75 |
62 73 74
|
tpeq123d |
|
| 76 |
59 75
|
uneq12d |
|
| 77 |
42
|
fveq2d |
|
| 78 |
77 12
|
eqtr4di |
|
| 79 |
37
|
adantr |
|
| 80 |
78 79
|
oveq12d |
|
| 81 |
78 80
|
oveq12d |
|
| 82 |
81
|
opeq2d |
|
| 83 |
40
|
eleq2d |
|
| 84 |
40
|
eleq2d |
|
| 85 |
83 84
|
anbi12d |
|
| 86 |
42
|
fveq2d |
|
| 87 |
86 6
|
eqtr4di |
|
| 88 |
46 87 47
|
breq123d |
|
| 89 |
85 88
|
anbi12d |
|
| 90 |
89
|
opabbidv |
|
| 91 |
90 17
|
eqtr4di |
Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = .c_ ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } = .c_ ) with typecode |- |
| 92 |
91
|
opeq2d |
Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. = <. ( le ` ndx ) , .c_ >. ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. = <. ( le ` ndx ) , .c_ >. ) with typecode |- |
| 93 |
42
|
fveq2d |
|
| 94 |
93 13
|
eqtr4di |
|
| 95 |
94 46 47
|
oveq123d |
|
| 96 |
40 40 95
|
mpoeq123dv |
|
| 97 |
96 18
|
eqtr4di |
|
| 98 |
97
|
opeq2d |
|
| 99 |
82 92 98
|
tpeq123d |
Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } = { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } = { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) with typecode |- |
| 100 |
76 99
|
uneq12d |
Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) = ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) ) with typecode |- |
| 101 |
42 79
|
oveq12d |
|
| 102 |
101 11
|
eqtr4di |
|
| 103 |
100 102
|
oveq12d |
Could not format ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- |
| 104 |
33 39 103
|
csbied2 |
Could not format ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- |
| 105 |
26 29 104
|
csbied2 |
Could not format ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ ( ( ( { <. ( Base ` ndx ) , w >. , <. ( +g ` ndx ) , ( a e. w , b e. w |-> <. ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( +g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. , <. ( .r ` ndx ) , ( a e. w , b e. w |-> <. ( ( 1st ` a ) x ( 1st ` b ) ) , ( ( 2nd ` a ) x ( 2nd ` b ) ) >. ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` r ) >. , <. ( .s ` ndx ) , ( k e. ( Base ` ( Scalar ` r ) ) , a e. w |-> <. ( k ( .s ` r ) ( 1st ` a ) ) , ( 2nd ` a ) >. ) >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopSet ` r ) tX ( ( TopSet ` r ) |`t s ) ) >. , <. ( le ` ndx ) , { <. a , b >. | ( ( a e. w /\ b e. w ) /\ ( ( 1st ` a ) x ( 2nd ` b ) ) ( le ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) } >. , <. ( dist ` ndx ) , ( a e. w , b e. w |-> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( dist ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) >. } ) /s ( r ~RL s ) ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- |
| 106 |
|
df-rloc |
|
| 107 |
105 106
|
ovmpoga |
Could not format ( ( R e. _V /\ S e. _V /\ ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ( R e. _V /\ S e. _V /\ ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) e. _V ) -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- |
| 108 |
21 24 25 107
|
syl3anc |
Could not format ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) : No typesetting found for |- ( ph -> ( R RLocal S ) = ( ( ( { <. ( Base ` ndx ) , W >. , <. ( +g ` ndx ) , .(+) >. , <. ( .r ` ndx ) , .(x) >. } u. { <. ( Scalar ` ndx ) , F >. , <. ( .s ` ndx ) , .X. >. , <. ( .i ` ndx ) , (/) >. } ) u. { <. ( TopSet ` ndx ) , ( J tX ( J |`t S ) ) >. , <. ( le ` ndx ) , .c_ >. , <. ( dist ` ndx ) , E >. } ) /s .~ ) ) with typecode |- |