Metamath Proof Explorer


Theorem fracf1

Description: The embedding of a commutative ring R into its field of fractions. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses fracf1.1 B = Base R
fracf1.2 E = RLReg R
fracf1.3 1 ˙ = 1 R
fracf1.4 φ R CRing
fracf1.5 ˙ = R ~RL E
fracf1.6 F = x B x 1 ˙ ˙
Assertion fracf1 φ F : B 1-1 B × E / ˙ F R RingHom Frac R

Proof

Step Hyp Ref Expression
1 fracf1.1 B = Base R
2 fracf1.2 E = RLReg R
3 fracf1.3 1 ˙ = 1 R
4 fracf1.4 φ R CRing
5 fracf1.5 ˙ = R ~RL E
6 fracf1.6 F = x B x 1 ˙ ˙
7 fracval Frac R = R RLocal RLReg R
8 2 oveq2i R RLocal E = R RLocal RLReg R
9 7 8 eqtr4i Frac R = R RLocal E
10 eqid mulGrp R = mulGrp R
11 4 crngringd φ R Ring
12 2 10 11 rrgsubm φ E SubMnd mulGrp R
13 ssidd φ E E
14 13 2 sseqtrdi φ E RLReg R
15 1 3 9 5 6 4 12 14 rlocf1 φ F : B 1-1 B × E / ˙ F R RingHom Frac R