| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fracf1.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | fracf1.2 | ⊢ 𝐸  =  ( RLReg ‘ 𝑅 ) | 
						
							| 3 |  | fracf1.3 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | fracf1.4 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 5 |  | fracf1.5 | ⊢  ∼   =  ( 𝑅  ~RL  𝐸 ) | 
						
							| 6 |  | fracf1.6 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  [ 〈 𝑥 ,   1  〉 ]  ∼  ) | 
						
							| 7 |  | fracval | ⊢ (  Frac  ‘ 𝑅 )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) | 
						
							| 8 | 2 | oveq2i | ⊢ ( 𝑅  RLocal  𝐸 )  =  ( 𝑅  RLocal  ( RLReg ‘ 𝑅 ) ) | 
						
							| 9 | 7 8 | eqtr4i | ⊢ (  Frac  ‘ 𝑅 )  =  ( 𝑅  RLocal  𝐸 ) | 
						
							| 10 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 11 | 4 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 12 | 2 10 11 | rrgsubm | ⊢ ( 𝜑  →  𝐸  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 13 |  | ssidd | ⊢ ( 𝜑  →  𝐸  ⊆  𝐸 ) | 
						
							| 14 | 13 2 | sseqtrdi | ⊢ ( 𝜑  →  𝐸  ⊆  ( RLReg ‘ 𝑅 ) ) | 
						
							| 15 | 1 3 9 5 6 4 12 14 | rlocf1 | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 –1-1→ ( ( 𝐵  ×  𝐸 )  /   ∼  )  ∧  𝐹  ∈  ( 𝑅  RingHom  (  Frac  ‘ 𝑅 ) ) ) ) |