| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlocf1.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | rlocf1.2 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | rlocf1.3 | ⊢ 𝐿  =  ( 𝑅  RLocal  𝑆 ) | 
						
							| 4 |  | rlocf1.4 | ⊢  ∼   =  ( 𝑅  ~RL  𝑆 ) | 
						
							| 5 |  | rlocf1.5 | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  [ 〈 𝑥 ,   1  〉 ]  ∼  ) | 
						
							| 6 |  | rlocf1.6 | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 7 |  | rlocf1.7 | ⊢ ( 𝜑  →  𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 8 |  | rlocf1.8 | ⊢ ( 𝜑  →  𝑆  ⊆  ( RLReg ‘ 𝑅 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 11 | 10 2 | ringidval | ⊢  1   =  ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 12 | 11 | subm0cl | ⊢ ( 𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) )  →   1   ∈  𝑆 ) | 
						
							| 13 | 7 12 | syl | ⊢ ( 𝜑  →   1   ∈  𝑆 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →   1   ∈  𝑆 ) | 
						
							| 15 | 9 14 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  〈 𝑥 ,   1  〉  ∈  ( 𝐵  ×  𝑆 ) ) | 
						
							| 16 | 4 | ovexi | ⊢  ∼   ∈  V | 
						
							| 17 | 16 | ecelqsi | ⊢ ( 〈 𝑥 ,   1  〉  ∈  ( 𝐵  ×  𝑆 )  →  [ 〈 𝑥 ,   1  〉 ]  ∼   ∈  ( ( 𝐵  ×  𝑆 )  /   ∼  ) ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  [ 〈 𝑥 ,   1  〉 ]  ∼   ∈  ( ( 𝐵  ×  𝑆 )  /   ∼  ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 [ 〈 𝑥 ,   1  〉 ]  ∼   ∈  ( ( 𝐵  ×  𝑆 )  /   ∼  ) ) | 
						
							| 20 | 6 | crnggrpd | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 21 | 20 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑅  ∈  Grp ) | 
						
							| 22 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 23 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 24 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 25 | 2 | fvexi | ⊢  1   ∈  V | 
						
							| 26 | 24 25 | op1st | ⊢ ( 1st  ‘ 〈 𝑥 ,   1  〉 )  =  𝑥 | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 1st  ‘ 〈 𝑥 ,   1  〉 )  =  𝑥 ) | 
						
							| 28 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 29 | 28 25 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑦 ,   1  〉 )  =   1 | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 2nd  ‘ 〈 𝑦 ,   1  〉 )  =   1  ) | 
						
							| 31 | 27 30 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) )  =  ( 𝑥 ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 32 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 33 | 6 | crngringd | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 34 | 33 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑅  ∈  Ring ) | 
						
							| 35 | 1 32 2 34 22 | ringridmd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑥 ( .r ‘ 𝑅 )  1  )  =  𝑥 ) | 
						
							| 36 | 31 35 | eqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) )  =  𝑥 ) | 
						
							| 37 | 28 25 | op1st | ⊢ ( 1st  ‘ 〈 𝑦 ,   1  〉 )  =  𝑦 | 
						
							| 38 | 37 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 1st  ‘ 〈 𝑦 ,   1  〉 )  =  𝑦 ) | 
						
							| 39 | 24 25 | op2nd | ⊢ ( 2nd  ‘ 〈 𝑥 ,   1  〉 )  =   1 | 
						
							| 40 | 39 | a1i | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 2nd  ‘ 〈 𝑥 ,   1  〉 )  =   1  ) | 
						
							| 41 | 38 40 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) )  =  ( 𝑦 ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 42 | 1 32 2 34 23 | ringridmd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑦 ( .r ‘ 𝑅 )  1  )  =  𝑦 ) | 
						
							| 43 | 41 42 | eqtrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) )  =  𝑦 ) | 
						
							| 44 | 36 43 | oveq12d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  =  ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 45 | 8 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑆  ⊆  ( RLReg ‘ 𝑅 ) ) | 
						
							| 46 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑡  ∈  𝑆 ) | 
						
							| 47 | 45 46 | sseldd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑡  ∈  ( RLReg ‘ 𝑅 ) ) | 
						
							| 48 | 27 22 | eqeltrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 1st  ‘ 〈 𝑥 ,   1  〉 )  ∈  𝐵 ) | 
						
							| 49 | 10 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 50 | 49 | submss | ⊢ ( 𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) )  →  𝑆  ⊆  𝐵 ) | 
						
							| 51 | 7 50 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 52 | 51 13 | sseldd | ⊢ ( 𝜑  →   1   ∈  𝐵 ) | 
						
							| 53 | 52 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →   1   ∈  𝐵 ) | 
						
							| 54 | 30 53 | eqeltrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 2nd  ‘ 〈 𝑦 ,   1  〉 )  ∈  𝐵 ) | 
						
							| 55 | 1 32 34 48 54 | ringcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) )  ∈  𝐵 ) | 
						
							| 56 | 38 23 | eqeltrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 1st  ‘ 〈 𝑦 ,   1  〉 )  ∈  𝐵 ) | 
						
							| 57 | 40 53 | eqeltrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 2nd  ‘ 〈 𝑥 ,   1  〉 )  ∈  𝐵 ) | 
						
							| 58 | 1 32 34 56 57 | ringcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) )  ∈  𝐵 ) | 
						
							| 59 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 60 | 1 59 | grpsubcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) )  ∈  𝐵  ∧  ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) )  ∈  𝐵 )  →  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  ∈  𝐵 ) | 
						
							| 61 | 21 55 58 60 | syl3anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  ∈  𝐵 ) | 
						
							| 62 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 63 |  | eqid | ⊢ ( RLReg ‘ 𝑅 )  =  ( RLReg ‘ 𝑅 ) | 
						
							| 64 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 65 | 63 1 32 64 | rrgeq0i | ⊢ ( ( 𝑡  ∈  ( RLReg ‘ 𝑅 )  ∧  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  ∈  𝐵 )  →  ( ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 )  →  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 66 | 65 | imp | ⊢ ( ( ( 𝑡  ∈  ( RLReg ‘ 𝑅 )  ∧  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  ∈  𝐵 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 67 | 47 61 62 66 | syl21anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 68 | 44 67 | eqtr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 69 | 1 64 59 | grpsubeq0 | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 )  =  ( 0g ‘ 𝑅 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 70 | 69 | biimpa | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 )  =  ( 0g ‘ 𝑅 ) )  →  𝑥  =  𝑦 ) | 
						
							| 71 | 21 22 23 68 70 | syl31anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  ∧  𝑡  ∈  𝑆 )  ∧  ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  𝑥  =  𝑦 ) | 
						
							| 72 | 51 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  →  𝑆  ⊆  𝐵 ) | 
						
							| 73 |  | eqid | ⊢ ( 𝐵  ×  𝑆 )  =  ( 𝐵  ×  𝑆 ) | 
						
							| 74 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑅  ∈  CRing ) | 
						
							| 75 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 76 | 1 64 2 32 59 73 4 74 75 | erler | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →   ∼   Er  ( 𝐵  ×  𝑆 ) ) | 
						
							| 77 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  〈 𝑥 ,   1  〉  ∈  ( 𝐵  ×  𝑆 ) ) | 
						
							| 78 | 76 77 | erth | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( 〈 𝑥 ,   1  〉  ∼  〈 𝑦 ,   1  〉  ↔  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  ) ) | 
						
							| 79 | 78 | biimpar | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  →  〈 𝑥 ,   1  〉  ∼  〈 𝑦 ,   1  〉 ) | 
						
							| 80 | 1 4 72 64 32 59 79 | erldi | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  →  ∃ 𝑡  ∈  𝑆 ( 𝑡 ( .r ‘ 𝑅 ) ( ( ( 1st  ‘ 〈 𝑥 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑦 ,   1  〉 ) ) ( -g ‘ 𝑅 ) ( ( 1st  ‘ 〈 𝑦 ,   1  〉 ) ( .r ‘ 𝑅 ) ( 2nd  ‘ 〈 𝑥 ,   1  〉 ) ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 81 | 71 80 | r19.29a | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  ∧  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  )  →  𝑥  =  𝑦 ) | 
						
							| 82 | 81 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐵 )  →  ( [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼   →  𝑥  =  𝑦 ) ) | 
						
							| 83 | 82 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼   →  𝑥  =  𝑦 ) ) | 
						
							| 84 | 83 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼   →  𝑥  =  𝑦 ) ) | 
						
							| 85 |  | opeq1 | ⊢ ( 𝑥  =  𝑦  →  〈 𝑥 ,   1  〉  =  〈 𝑦 ,   1  〉 ) | 
						
							| 86 | 85 | eceq1d | ⊢ ( 𝑥  =  𝑦  →  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼  ) | 
						
							| 87 | 5 86 | f1mpt | ⊢ ( 𝐹 : 𝐵 –1-1→ ( ( 𝐵  ×  𝑆 )  /   ∼  )  ↔  ( ∀ 𝑥  ∈  𝐵 [ 〈 𝑥 ,   1  〉 ]  ∼   ∈  ( ( 𝐵  ×  𝑆 )  /   ∼  )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑦 ,   1  〉 ]  ∼   →  𝑥  =  𝑦 ) ) ) | 
						
							| 88 | 19 84 87 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐵 –1-1→ ( ( 𝐵  ×  𝑆 )  /   ∼  ) ) | 
						
							| 89 |  | eqid | ⊢ ( 1r ‘ 𝐿 )  =  ( 1r ‘ 𝐿 ) | 
						
							| 90 |  | eqid | ⊢ ( .r ‘ 𝐿 )  =  ( .r ‘ 𝐿 ) | 
						
							| 91 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 92 | 1 32 91 3 4 6 7 | rloccring | ⊢ ( 𝜑  →  𝐿  ∈  CRing ) | 
						
							| 93 | 92 | crngringd | ⊢ ( 𝜑  →  𝐿  ∈  Ring ) | 
						
							| 94 |  | opeq1 | ⊢ ( 𝑥  =   1   →  〈 𝑥 ,   1  〉  =  〈  1  ,   1  〉 ) | 
						
							| 95 | 94 | eceq1d | ⊢ ( 𝑥  =   1   →  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈  1  ,   1  〉 ]  ∼  ) | 
						
							| 96 |  | eqid | ⊢ [ 〈  1  ,   1  〉 ]  ∼   =  [ 〈  1  ,   1  〉 ]  ∼ | 
						
							| 97 | 64 2 3 4 6 7 96 | rloc1r | ⊢ ( 𝜑  →  [ 〈  1  ,   1  〉 ]  ∼   =  ( 1r ‘ 𝐿 ) ) | 
						
							| 98 | 95 97 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑥  =   1  )  →  [ 〈 𝑥 ,   1  〉 ]  ∼   =  ( 1r ‘ 𝐿 ) ) | 
						
							| 99 |  | fvexd | ⊢ ( 𝜑  →  ( 1r ‘ 𝐿 )  ∈  V ) | 
						
							| 100 | 5 98 52 99 | fvmptd2 | ⊢ ( 𝜑  →  ( 𝐹 ‘  1  )  =  ( 1r ‘ 𝐿 ) ) | 
						
							| 101 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 102 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →   1   ∈  𝐵 ) | 
						
							| 103 | 1 32 2 101 102 | ringlidmd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  (  1  ( .r ‘ 𝑅 )  1  )  =   1  ) | 
						
							| 104 | 103 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →   1   =  (  1  ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 105 | 104 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉  =  〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,  (  1  ( .r ‘ 𝑅 )  1  ) 〉 ) | 
						
							| 106 | 105 | eceq1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   =  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,  (  1  ( .r ‘ 𝑅 )  1  ) 〉 ]  ∼  ) | 
						
							| 107 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  𝑅  ∈  CRing ) | 
						
							| 108 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  𝑆  ∈  ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 109 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  𝑎  ∈  𝐵 ) | 
						
							| 110 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 111 | 108 12 | syl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →   1   ∈  𝑆 ) | 
						
							| 112 | 1 32 91 3 4 107 108 109 110 111 111 90 | rlocmulval | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( [ 〈 𝑎 ,   1  〉 ]  ∼  ( .r ‘ 𝐿 ) [ 〈 𝑏 ,   1  〉 ]  ∼  )  =  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,  (  1  ( .r ‘ 𝑅 )  1  ) 〉 ]  ∼  ) | 
						
							| 113 | 106 112 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   =  ( [ 〈 𝑎 ,   1  〉 ]  ∼  ( .r ‘ 𝐿 ) [ 〈 𝑏 ,   1  〉 ]  ∼  ) ) | 
						
							| 114 |  | opeq1 | ⊢ ( 𝑥  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  →  〈 𝑥 ,   1  〉  =  〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉 ) | 
						
							| 115 | 114 | eceq1d | ⊢ ( 𝑥  =  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  →  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼  ) | 
						
							| 116 | 1 32 101 109 110 | ringcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 117 |  | ecexg | ⊢ (  ∼   ∈  V  →  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 118 | 16 117 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 119 | 5 115 116 118 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼  ) | 
						
							| 120 |  | opeq1 | ⊢ ( 𝑥  =  𝑎  →  〈 𝑥 ,   1  〉  =  〈 𝑎 ,   1  〉 ) | 
						
							| 121 | 120 | eceq1d | ⊢ ( 𝑥  =  𝑎  →  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑎 ,   1  〉 ]  ∼  ) | 
						
							| 122 |  | ecexg | ⊢ (  ∼   ∈  V  →  [ 〈 𝑎 ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 123 | 16 122 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 𝑎 ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 124 | 5 121 109 123 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑎 )  =  [ 〈 𝑎 ,   1  〉 ]  ∼  ) | 
						
							| 125 |  | opeq1 | ⊢ ( 𝑥  =  𝑏  →  〈 𝑥 ,   1  〉  =  〈 𝑏 ,   1  〉 ) | 
						
							| 126 | 125 | eceq1d | ⊢ ( 𝑥  =  𝑏  →  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 𝑏 ,   1  〉 ]  ∼  ) | 
						
							| 127 |  | ecexg | ⊢ (  ∼   ∈  V  →  [ 〈 𝑏 ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 128 | 16 127 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 𝑏 ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 129 | 5 126 110 128 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑏 )  =  [ 〈 𝑏 ,   1  〉 ]  ∼  ) | 
						
							| 130 | 124 129 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) )  =  ( [ 〈 𝑎 ,   1  〉 ]  ∼  ( .r ‘ 𝐿 ) [ 〈 𝑏 ,   1  〉 ]  ∼  ) ) | 
						
							| 131 | 113 119 130 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 132 | 131 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 133 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 134 |  | eqid | ⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ 𝐿 ) | 
						
							| 135 | 18 5 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( ( 𝐵  ×  𝑆 )  /   ∼  ) ) | 
						
							| 136 | 1 64 32 59 73 3 4 6 51 | rlocbas | ⊢ ( 𝜑  →  ( ( 𝐵  ×  𝑆 )  /   ∼  )  =  ( Base ‘ 𝐿 ) ) | 
						
							| 137 | 136 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 ⟶ ( ( 𝐵  ×  𝑆 )  /   ∼  )  ↔  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐿 ) ) ) | 
						
							| 138 | 135 137 | mpbid | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐿 ) ) | 
						
							| 139 | 1 32 2 101 109 | ringridmd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑅 )  1  )  =  𝑎 ) | 
						
							| 140 | 1 32 2 101 110 | ringridmd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝑏 ( .r ‘ 𝑅 )  1  )  =  𝑏 ) | 
						
							| 141 | 139 140 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝑎 ( .r ‘ 𝑅 )  1  ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 )  1  ) )  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 142 | 141 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  =  ( ( 𝑎 ( .r ‘ 𝑅 )  1  ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 )  1  ) ) ) | 
						
							| 143 | 142 104 | opeq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉  =  〈 ( ( 𝑎 ( .r ‘ 𝑅 )  1  ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 )  1  ) ) ,  (  1  ( .r ‘ 𝑅 )  1  ) 〉 ) | 
						
							| 144 | 143 | eceq1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   =  [ 〈 ( ( 𝑎 ( .r ‘ 𝑅 )  1  ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 )  1  ) ) ,  (  1  ( .r ‘ 𝑅 )  1  ) 〉 ]  ∼  ) | 
						
							| 145 | 1 32 91 3 4 107 108 109 110 111 111 134 | rlocaddval | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( [ 〈 𝑎 ,   1  〉 ]  ∼  ( +g ‘ 𝐿 ) [ 〈 𝑏 ,   1  〉 ]  ∼  )  =  [ 〈 ( ( 𝑎 ( .r ‘ 𝑅 )  1  ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 )  1  ) ) ,  (  1  ( .r ‘ 𝑅 )  1  ) 〉 ]  ∼  ) | 
						
							| 146 | 144 145 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   =  ( [ 〈 𝑎 ,   1  〉 ]  ∼  ( +g ‘ 𝐿 ) [ 〈 𝑏 ,   1  〉 ]  ∼  ) ) | 
						
							| 147 |  | opeq1 | ⊢ ( 𝑥  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  →  〈 𝑥 ,   1  〉  =  〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉 ) | 
						
							| 148 | 147 | eceq1d | ⊢ ( 𝑥  =  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  →  [ 〈 𝑥 ,   1  〉 ]  ∼   =  [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼  ) | 
						
							| 149 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  𝑅  ∈  Grp ) | 
						
							| 150 | 1 91 149 109 110 | grpcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 151 |  | ecexg | ⊢ (  ∼   ∈  V  →  [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 152 | 16 151 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼   ∈  V ) | 
						
							| 153 | 5 148 150 152 | fvmptd3 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  [ 〈 ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ,   1  〉 ]  ∼  ) | 
						
							| 154 | 124 129 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) )  =  ( [ 〈 𝑎 ,   1  〉 ]  ∼  ( +g ‘ 𝐿 ) [ 〈 𝑏 ,   1  〉 ]  ∼  ) ) | 
						
							| 155 | 146 153 154 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 156 | 155 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐿 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 157 | 1 2 89 32 90 33 93 100 132 133 91 134 138 156 | isrhmd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝐿 ) ) | 
						
							| 158 | 88 157 | jca | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 –1-1→ ( ( 𝐵  ×  𝑆 )  /   ∼  )  ∧  𝐹  ∈  ( 𝑅  RingHom  𝐿 ) ) ) |