| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlocf1.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | rlocf1.2 |  |-  .1. = ( 1r ` R ) | 
						
							| 3 |  | rlocf1.3 |  |-  L = ( R RLocal S ) | 
						
							| 4 |  | rlocf1.4 |  |-  .~ = ( R ~RL S ) | 
						
							| 5 |  | rlocf1.5 |  |-  F = ( x e. B |-> [ <. x , .1. >. ] .~ ) | 
						
							| 6 |  | rlocf1.6 |  |-  ( ph -> R e. CRing ) | 
						
							| 7 |  | rlocf1.7 |  |-  ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 8 |  | rlocf1.8 |  |-  ( ph -> S C_ ( RLReg ` R ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ph /\ x e. B ) -> x e. B ) | 
						
							| 10 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 11 | 10 2 | ringidval |  |-  .1. = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 12 | 11 | subm0cl |  |-  ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> .1. e. S ) | 
						
							| 13 | 7 12 | syl |  |-  ( ph -> .1. e. S ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ x e. B ) -> .1. e. S ) | 
						
							| 15 | 9 14 | opelxpd |  |-  ( ( ph /\ x e. B ) -> <. x , .1. >. e. ( B X. S ) ) | 
						
							| 16 | 4 | ovexi |  |-  .~ e. _V | 
						
							| 17 | 16 | ecelqsi |  |-  ( <. x , .1. >. e. ( B X. S ) -> [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( ph /\ x e. B ) -> [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( ph -> A. x e. B [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) ) | 
						
							| 20 | 6 | crnggrpd |  |-  ( ph -> R e. Grp ) | 
						
							| 21 | 20 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> R e. Grp ) | 
						
							| 22 |  | simp-5r |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> x e. B ) | 
						
							| 23 |  | simp-4r |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> y e. B ) | 
						
							| 24 |  | vex |  |-  x e. _V | 
						
							| 25 | 2 | fvexi |  |-  .1. e. _V | 
						
							| 26 | 24 25 | op1st |  |-  ( 1st ` <. x , .1. >. ) = x | 
						
							| 27 | 26 | a1i |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. x , .1. >. ) = x ) | 
						
							| 28 |  | vex |  |-  y e. _V | 
						
							| 29 | 28 25 | op2nd |  |-  ( 2nd ` <. y , .1. >. ) = .1. | 
						
							| 30 | 29 | a1i |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. y , .1. >. ) = .1. ) | 
						
							| 31 | 27 30 | oveq12d |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) = ( x ( .r ` R ) .1. ) ) | 
						
							| 32 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 33 | 6 | crngringd |  |-  ( ph -> R e. Ring ) | 
						
							| 34 | 33 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> R e. Ring ) | 
						
							| 35 | 1 32 2 34 22 | ringridmd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( x ( .r ` R ) .1. ) = x ) | 
						
							| 36 | 31 35 | eqtrd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) = x ) | 
						
							| 37 | 28 25 | op1st |  |-  ( 1st ` <. y , .1. >. ) = y | 
						
							| 38 | 37 | a1i |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. y , .1. >. ) = y ) | 
						
							| 39 | 24 25 | op2nd |  |-  ( 2nd ` <. x , .1. >. ) = .1. | 
						
							| 40 | 39 | a1i |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. x , .1. >. ) = .1. ) | 
						
							| 41 | 38 40 | oveq12d |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) = ( y ( .r ` R ) .1. ) ) | 
						
							| 42 | 1 32 2 34 23 | ringridmd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( y ( .r ` R ) .1. ) = y ) | 
						
							| 43 | 41 42 | eqtrd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) = y ) | 
						
							| 44 | 36 43 | oveq12d |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( x ( -g ` R ) y ) ) | 
						
							| 45 | 8 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> S C_ ( RLReg ` R ) ) | 
						
							| 46 |  | simplr |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> t e. S ) | 
						
							| 47 | 45 46 | sseldd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> t e. ( RLReg ` R ) ) | 
						
							| 48 | 27 22 | eqeltrd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. x , .1. >. ) e. B ) | 
						
							| 49 | 10 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 50 | 49 | submss |  |-  ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B ) | 
						
							| 51 | 7 50 | syl |  |-  ( ph -> S C_ B ) | 
						
							| 52 | 51 13 | sseldd |  |-  ( ph -> .1. e. B ) | 
						
							| 53 | 52 | ad5antr |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> .1. e. B ) | 
						
							| 54 | 30 53 | eqeltrd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. y , .1. >. ) e. B ) | 
						
							| 55 | 1 32 34 48 54 | ringcld |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) e. B ) | 
						
							| 56 | 38 23 | eqeltrd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 1st ` <. y , .1. >. ) e. B ) | 
						
							| 57 | 40 53 | eqeltrd |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( 2nd ` <. x , .1. >. ) e. B ) | 
						
							| 58 | 1 32 34 56 57 | ringcld |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) e. B ) | 
						
							| 59 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 60 | 1 59 | grpsubcl |  |-  ( ( R e. Grp /\ ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) e. B /\ ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) e. B ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) | 
						
							| 61 | 21 55 58 60 | syl3anc |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) | 
						
							| 62 |  | simpr |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) | 
						
							| 63 |  | eqid |  |-  ( RLReg ` R ) = ( RLReg ` R ) | 
						
							| 64 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 65 | 63 1 32 64 | rrgeq0i |  |-  ( ( t e. ( RLReg ` R ) /\ ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) -> ( ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( 0g ` R ) ) ) | 
						
							| 66 | 65 | imp |  |-  ( ( ( t e. ( RLReg ` R ) /\ ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) e. B ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( 0g ` R ) ) | 
						
							| 67 | 47 61 62 66 | syl21anc |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) = ( 0g ` R ) ) | 
						
							| 68 | 44 67 | eqtr3d |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> ( x ( -g ` R ) y ) = ( 0g ` R ) ) | 
						
							| 69 | 1 64 59 | grpsubeq0 |  |-  ( ( R e. Grp /\ x e. B /\ y e. B ) -> ( ( x ( -g ` R ) y ) = ( 0g ` R ) <-> x = y ) ) | 
						
							| 70 | 69 | biimpa |  |-  ( ( ( R e. Grp /\ x e. B /\ y e. B ) /\ ( x ( -g ` R ) y ) = ( 0g ` R ) ) -> x = y ) | 
						
							| 71 | 21 22 23 68 70 | syl31anc |  |-  ( ( ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) /\ t e. S ) /\ ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) -> x = y ) | 
						
							| 72 | 51 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> S C_ B ) | 
						
							| 73 |  | eqid |  |-  ( B X. S ) = ( B X. S ) | 
						
							| 74 | 6 | ad2antrr |  |-  ( ( ( ph /\ x e. B ) /\ y e. B ) -> R e. CRing ) | 
						
							| 75 | 7 | ad2antrr |  |-  ( ( ( ph /\ x e. B ) /\ y e. B ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 76 | 1 64 2 32 59 73 4 74 75 | erler |  |-  ( ( ( ph /\ x e. B ) /\ y e. B ) -> .~ Er ( B X. S ) ) | 
						
							| 77 | 15 | adantr |  |-  ( ( ( ph /\ x e. B ) /\ y e. B ) -> <. x , .1. >. e. ( B X. S ) ) | 
						
							| 78 | 76 77 | erth |  |-  ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( <. x , .1. >. .~ <. y , .1. >. <-> [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) ) | 
						
							| 79 | 78 | biimpar |  |-  ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> <. x , .1. >. .~ <. y , .1. >. ) | 
						
							| 80 | 1 4 72 64 32 59 79 | erldi |  |-  ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> E. t e. S ( t ( .r ` R ) ( ( ( 1st ` <. x , .1. >. ) ( .r ` R ) ( 2nd ` <. y , .1. >. ) ) ( -g ` R ) ( ( 1st ` <. y , .1. >. ) ( .r ` R ) ( 2nd ` <. x , .1. >. ) ) ) ) = ( 0g ` R ) ) | 
						
							| 81 | 71 80 | r19.29a |  |-  ( ( ( ( ph /\ x e. B ) /\ y e. B ) /\ [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) -> x = y ) | 
						
							| 82 | 81 | ex |  |-  ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) | 
						
							| 83 | 82 | anasss |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) | 
						
							| 84 | 83 | ralrimivva |  |-  ( ph -> A. x e. B A. y e. B ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) | 
						
							| 85 |  | opeq1 |  |-  ( x = y -> <. x , .1. >. = <. y , .1. >. ) | 
						
							| 86 | 85 | eceq1d |  |-  ( x = y -> [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ ) | 
						
							| 87 | 5 86 | f1mpt |  |-  ( F : B -1-1-> ( ( B X. S ) /. .~ ) <-> ( A. x e. B [ <. x , .1. >. ] .~ e. ( ( B X. S ) /. .~ ) /\ A. x e. B A. y e. B ( [ <. x , .1. >. ] .~ = [ <. y , .1. >. ] .~ -> x = y ) ) ) | 
						
							| 88 | 19 84 87 | sylanbrc |  |-  ( ph -> F : B -1-1-> ( ( B X. S ) /. .~ ) ) | 
						
							| 89 |  | eqid |  |-  ( 1r ` L ) = ( 1r ` L ) | 
						
							| 90 |  | eqid |  |-  ( .r ` L ) = ( .r ` L ) | 
						
							| 91 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 92 | 1 32 91 3 4 6 7 | rloccring |  |-  ( ph -> L e. CRing ) | 
						
							| 93 | 92 | crngringd |  |-  ( ph -> L e. Ring ) | 
						
							| 94 |  | opeq1 |  |-  ( x = .1. -> <. x , .1. >. = <. .1. , .1. >. ) | 
						
							| 95 | 94 | eceq1d |  |-  ( x = .1. -> [ <. x , .1. >. ] .~ = [ <. .1. , .1. >. ] .~ ) | 
						
							| 96 |  | eqid |  |-  [ <. .1. , .1. >. ] .~ = [ <. .1. , .1. >. ] .~ | 
						
							| 97 | 64 2 3 4 6 7 96 | rloc1r |  |-  ( ph -> [ <. .1. , .1. >. ] .~ = ( 1r ` L ) ) | 
						
							| 98 | 95 97 | sylan9eqr |  |-  ( ( ph /\ x = .1. ) -> [ <. x , .1. >. ] .~ = ( 1r ` L ) ) | 
						
							| 99 |  | fvexd |  |-  ( ph -> ( 1r ` L ) e. _V ) | 
						
							| 100 | 5 98 52 99 | fvmptd2 |  |-  ( ph -> ( F ` .1. ) = ( 1r ` L ) ) | 
						
							| 101 | 33 | ad2antrr |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> R e. Ring ) | 
						
							| 102 | 52 | ad2antrr |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> .1. e. B ) | 
						
							| 103 | 1 32 2 101 102 | ringlidmd |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( .1. ( .r ` R ) .1. ) = .1. ) | 
						
							| 104 | 103 | eqcomd |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> .1. = ( .1. ( .r ` R ) .1. ) ) | 
						
							| 105 | 104 | opeq2d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> <. ( a ( .r ` R ) b ) , .1. >. = <. ( a ( .r ` R ) b ) , ( .1. ( .r ` R ) .1. ) >. ) | 
						
							| 106 | 105 | eceq1d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ = [ <. ( a ( .r ` R ) b ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) | 
						
							| 107 | 6 | ad2antrr |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> R e. CRing ) | 
						
							| 108 | 7 | ad2antrr |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) | 
						
							| 109 |  | simplr |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> a e. B ) | 
						
							| 110 |  | simpr |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> b e. B ) | 
						
							| 111 | 108 12 | syl |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> .1. e. S ) | 
						
							| 112 | 1 32 91 3 4 107 108 109 110 111 111 90 | rlocmulval |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( [ <. a , .1. >. ] .~ ( .r ` L ) [ <. b , .1. >. ] .~ ) = [ <. ( a ( .r ` R ) b ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) | 
						
							| 113 | 106 112 | eqtr4d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ = ( [ <. a , .1. >. ] .~ ( .r ` L ) [ <. b , .1. >. ] .~ ) ) | 
						
							| 114 |  | opeq1 |  |-  ( x = ( a ( .r ` R ) b ) -> <. x , .1. >. = <. ( a ( .r ` R ) b ) , .1. >. ) | 
						
							| 115 | 114 | eceq1d |  |-  ( x = ( a ( .r ` R ) b ) -> [ <. x , .1. >. ] .~ = [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ ) | 
						
							| 116 | 1 32 101 109 110 | ringcld |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) | 
						
							| 117 |  | ecexg |  |-  ( .~ e. _V -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ e. _V ) | 
						
							| 118 | 16 117 | mp1i |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ e. _V ) | 
						
							| 119 | 5 115 116 118 | fvmptd3 |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( .r ` R ) b ) ) = [ <. ( a ( .r ` R ) b ) , .1. >. ] .~ ) | 
						
							| 120 |  | opeq1 |  |-  ( x = a -> <. x , .1. >. = <. a , .1. >. ) | 
						
							| 121 | 120 | eceq1d |  |-  ( x = a -> [ <. x , .1. >. ] .~ = [ <. a , .1. >. ] .~ ) | 
						
							| 122 |  | ecexg |  |-  ( .~ e. _V -> [ <. a , .1. >. ] .~ e. _V ) | 
						
							| 123 | 16 122 | mp1i |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. a , .1. >. ] .~ e. _V ) | 
						
							| 124 | 5 121 109 123 | fvmptd3 |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` a ) = [ <. a , .1. >. ] .~ ) | 
						
							| 125 |  | opeq1 |  |-  ( x = b -> <. x , .1. >. = <. b , .1. >. ) | 
						
							| 126 | 125 | eceq1d |  |-  ( x = b -> [ <. x , .1. >. ] .~ = [ <. b , .1. >. ] .~ ) | 
						
							| 127 |  | ecexg |  |-  ( .~ e. _V -> [ <. b , .1. >. ] .~ e. _V ) | 
						
							| 128 | 16 127 | mp1i |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. b , .1. >. ] .~ e. _V ) | 
						
							| 129 | 5 126 110 128 | fvmptd3 |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` b ) = [ <. b , .1. >. ] .~ ) | 
						
							| 130 | 124 129 | oveq12d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( ( F ` a ) ( .r ` L ) ( F ` b ) ) = ( [ <. a , .1. >. ] .~ ( .r ` L ) [ <. b , .1. >. ] .~ ) ) | 
						
							| 131 | 113 119 130 | 3eqtr4d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( .r ` R ) b ) ) = ( ( F ` a ) ( .r ` L ) ( F ` b ) ) ) | 
						
							| 132 | 131 | anasss |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( .r ` R ) b ) ) = ( ( F ` a ) ( .r ` L ) ( F ` b ) ) ) | 
						
							| 133 |  | eqid |  |-  ( Base ` L ) = ( Base ` L ) | 
						
							| 134 |  | eqid |  |-  ( +g ` L ) = ( +g ` L ) | 
						
							| 135 | 18 5 | fmptd |  |-  ( ph -> F : B --> ( ( B X. S ) /. .~ ) ) | 
						
							| 136 | 1 64 32 59 73 3 4 6 51 | rlocbas |  |-  ( ph -> ( ( B X. S ) /. .~ ) = ( Base ` L ) ) | 
						
							| 137 | 136 | feq3d |  |-  ( ph -> ( F : B --> ( ( B X. S ) /. .~ ) <-> F : B --> ( Base ` L ) ) ) | 
						
							| 138 | 135 137 | mpbid |  |-  ( ph -> F : B --> ( Base ` L ) ) | 
						
							| 139 | 1 32 2 101 109 | ringridmd |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( .r ` R ) .1. ) = a ) | 
						
							| 140 | 1 32 2 101 110 | ringridmd |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( b ( .r ` R ) .1. ) = b ) | 
						
							| 141 | 139 140 | oveq12d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) = ( a ( +g ` R ) b ) ) | 
						
							| 142 | 141 | eqcomd |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( +g ` R ) b ) = ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) ) | 
						
							| 143 | 142 104 | opeq12d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> <. ( a ( +g ` R ) b ) , .1. >. = <. ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ) | 
						
							| 144 | 143 | eceq1d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ = [ <. ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) | 
						
							| 145 | 1 32 91 3 4 107 108 109 110 111 111 134 | rlocaddval |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( [ <. a , .1. >. ] .~ ( +g ` L ) [ <. b , .1. >. ] .~ ) = [ <. ( ( a ( .r ` R ) .1. ) ( +g ` R ) ( b ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) | 
						
							| 146 | 144 145 | eqtr4d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ = ( [ <. a , .1. >. ] .~ ( +g ` L ) [ <. b , .1. >. ] .~ ) ) | 
						
							| 147 |  | opeq1 |  |-  ( x = ( a ( +g ` R ) b ) -> <. x , .1. >. = <. ( a ( +g ` R ) b ) , .1. >. ) | 
						
							| 148 | 147 | eceq1d |  |-  ( x = ( a ( +g ` R ) b ) -> [ <. x , .1. >. ] .~ = [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ ) | 
						
							| 149 | 20 | ad2antrr |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> R e. Grp ) | 
						
							| 150 | 1 91 149 109 110 | grpcld |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) | 
						
							| 151 |  | ecexg |  |-  ( .~ e. _V -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ e. _V ) | 
						
							| 152 | 16 151 | mp1i |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ e. _V ) | 
						
							| 153 | 5 148 150 152 | fvmptd3 |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( +g ` R ) b ) ) = [ <. ( a ( +g ` R ) b ) , .1. >. ] .~ ) | 
						
							| 154 | 124 129 | oveq12d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( ( F ` a ) ( +g ` L ) ( F ` b ) ) = ( [ <. a , .1. >. ] .~ ( +g ` L ) [ <. b , .1. >. ] .~ ) ) | 
						
							| 155 | 146 153 154 | 3eqtr4d |  |-  ( ( ( ph /\ a e. B ) /\ b e. B ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` L ) ( F ` b ) ) ) | 
						
							| 156 | 155 | anasss |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` L ) ( F ` b ) ) ) | 
						
							| 157 | 1 2 89 32 90 33 93 100 132 133 91 134 138 156 | isrhmd |  |-  ( ph -> F e. ( R RingHom L ) ) | 
						
							| 158 | 88 157 | jca |  |-  ( ph -> ( F : B -1-1-> ( ( B X. S ) /. .~ ) /\ F e. ( R RingHom L ) ) ) |