| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rloc0g.1 |
|- .0. = ( 0g ` R ) |
| 2 |
|
rloc0g.2 |
|- .1. = ( 1r ` R ) |
| 3 |
|
rloc0g.3 |
|- L = ( R RLocal S ) |
| 4 |
|
rloc0g.4 |
|- .~ = ( R ~RL S ) |
| 5 |
|
rloc0g.5 |
|- ( ph -> R e. CRing ) |
| 6 |
|
rloc0g.6 |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 7 |
|
rloc1r.i |
|- I = [ <. .1. , .1. >. ] .~ |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 11 |
8 9 10 3 4 5 6
|
rloccring |
|- ( ph -> L e. CRing ) |
| 12 |
11
|
crngringd |
|- ( ph -> L e. Ring ) |
| 13 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 14 |
13 8
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 15 |
14
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ ( Base ` R ) ) |
| 16 |
6 15
|
syl |
|- ( ph -> S C_ ( Base ` R ) ) |
| 17 |
13 2
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 18 |
17
|
subm0cl |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> .1. e. S ) |
| 19 |
6 18
|
syl |
|- ( ph -> .1. e. S ) |
| 20 |
16 19
|
sseldd |
|- ( ph -> .1. e. ( Base ` R ) ) |
| 21 |
20 19
|
opelxpd |
|- ( ph -> <. .1. , .1. >. e. ( ( Base ` R ) X. S ) ) |
| 22 |
4
|
ovexi |
|- .~ e. _V |
| 23 |
22
|
ecelqsi |
|- ( <. .1. , .1. >. e. ( ( Base ` R ) X. S ) -> [ <. .1. , .1. >. ] .~ e. ( ( ( Base ` R ) X. S ) /. .~ ) ) |
| 24 |
21 23
|
syl |
|- ( ph -> [ <. .1. , .1. >. ] .~ e. ( ( ( Base ` R ) X. S ) /. .~ ) ) |
| 25 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 26 |
|
eqid |
|- ( ( Base ` R ) X. S ) = ( ( Base ` R ) X. S ) |
| 27 |
8 1 9 25 26 3 4 5 16
|
rlocbas |
|- ( ph -> ( ( ( Base ` R ) X. S ) /. .~ ) = ( Base ` L ) ) |
| 28 |
24 27
|
eleqtrd |
|- ( ph -> [ <. .1. , .1. >. ] .~ e. ( Base ` L ) ) |
| 29 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. CRing ) |
| 30 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 31 |
20
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> .1. e. ( Base ` R ) ) |
| 32 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> a e. ( Base ` R ) ) |
| 33 |
30 18
|
syl |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> .1. e. S ) |
| 34 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b e. S ) |
| 35 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
| 36 |
8 9 10 3 4 29 30 31 32 33 34 35
|
rlocmulval |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. .1. , .1. >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = [ <. ( .1. ( .r ` R ) a ) , ( .1. ( .r ` R ) b ) >. ] .~ ) |
| 37 |
29
|
crngringd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. Ring ) |
| 38 |
8 9 2 37 32
|
ringlidmd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( .1. ( .r ` R ) a ) = a ) |
| 39 |
30 15
|
syl |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> S C_ ( Base ` R ) ) |
| 40 |
39 34
|
sseldd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b e. ( Base ` R ) ) |
| 41 |
8 9 2 37 40
|
ringlidmd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( .1. ( .r ` R ) b ) = b ) |
| 42 |
38 41
|
opeq12d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( .1. ( .r ` R ) a ) , ( .1. ( .r ` R ) b ) >. = <. a , b >. ) |
| 43 |
42
|
eceq1d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( .1. ( .r ` R ) a ) , ( .1. ( .r ` R ) b ) >. ] .~ = [ <. a , b >. ] .~ ) |
| 44 |
36 43
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. .1. , .1. >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = [ <. a , b >. ] .~ ) |
| 45 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> x = [ <. a , b >. ] .~ ) |
| 46 |
45
|
oveq2d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. .1. , .1. >. ] .~ ( .r ` L ) x ) = ( [ <. .1. , .1. >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) ) |
| 47 |
44 46 45
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. .1. , .1. >. ] .~ ( .r ` L ) x ) = x ) |
| 48 |
27
|
eqcomd |
|- ( ph -> ( Base ` L ) = ( ( ( Base ` R ) X. S ) /. .~ ) ) |
| 49 |
48
|
eleq2d |
|- ( ph -> ( x e. ( Base ` L ) <-> x e. ( ( ( Base ` R ) X. S ) /. .~ ) ) ) |
| 50 |
49
|
biimpa |
|- ( ( ph /\ x e. ( Base ` L ) ) -> x e. ( ( ( Base ` R ) X. S ) /. .~ ) ) |
| 51 |
50
|
elrlocbasi |
|- ( ( ph /\ x e. ( Base ` L ) ) -> E. a e. ( Base ` R ) E. b e. S x = [ <. a , b >. ] .~ ) |
| 52 |
47 51
|
r19.29vva |
|- ( ( ph /\ x e. ( Base ` L ) ) -> ( [ <. .1. , .1. >. ] .~ ( .r ` L ) x ) = x ) |
| 53 |
8 9 10 3 4 29 30 32 31 34 33 35
|
rlocmulval |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = [ <. ( a ( .r ` R ) .1. ) , ( b ( .r ` R ) .1. ) >. ] .~ ) |
| 54 |
8 9 2 37 32
|
ringridmd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( a ( .r ` R ) .1. ) = a ) |
| 55 |
8 9 2 37 40
|
ringridmd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( b ( .r ` R ) .1. ) = b ) |
| 56 |
54 55
|
opeq12d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( a ( .r ` R ) .1. ) , ( b ( .r ` R ) .1. ) >. = <. a , b >. ) |
| 57 |
56
|
eceq1d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( a ( .r ` R ) .1. ) , ( b ( .r ` R ) .1. ) >. ] .~ = [ <. a , b >. ] .~ ) |
| 58 |
53 57
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = [ <. a , b >. ] .~ ) |
| 59 |
45
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. .1. , .1. >. ] .~ ) ) |
| 60 |
58 59 45
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( Base ` L ) ) /\ a e. ( Base ` R ) ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = x ) |
| 61 |
60 51
|
r19.29vva |
|- ( ( ph /\ x e. ( Base ` L ) ) -> ( x ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = x ) |
| 62 |
52 61
|
jca |
|- ( ( ph /\ x e. ( Base ` L ) ) -> ( ( [ <. .1. , .1. >. ] .~ ( .r ` L ) x ) = x /\ ( x ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = x ) ) |
| 63 |
62
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` L ) ( ( [ <. .1. , .1. >. ] .~ ( .r ` L ) x ) = x /\ ( x ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = x ) ) |
| 64 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 65 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
| 66 |
64 35 65
|
isringid |
|- ( L e. Ring -> ( ( [ <. .1. , .1. >. ] .~ e. ( Base ` L ) /\ A. x e. ( Base ` L ) ( ( [ <. .1. , .1. >. ] .~ ( .r ` L ) x ) = x /\ ( x ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = x ) ) <-> ( 1r ` L ) = [ <. .1. , .1. >. ] .~ ) ) |
| 67 |
66
|
biimpa |
|- ( ( L e. Ring /\ ( [ <. .1. , .1. >. ] .~ e. ( Base ` L ) /\ A. x e. ( Base ` L ) ( ( [ <. .1. , .1. >. ] .~ ( .r ` L ) x ) = x /\ ( x ( .r ` L ) [ <. .1. , .1. >. ] .~ ) = x ) ) ) -> ( 1r ` L ) = [ <. .1. , .1. >. ] .~ ) |
| 68 |
12 28 63 67
|
syl12anc |
|- ( ph -> ( 1r ` L ) = [ <. .1. , .1. >. ] .~ ) |
| 69 |
7 68
|
eqtr4id |
|- ( ph -> I = ( 1r ` L ) ) |