| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlocaddval.1 |
|- B = ( Base ` R ) |
| 2 |
|
rlocaddval.2 |
|- .x. = ( .r ` R ) |
| 3 |
|
rlocaddval.3 |
|- .+ = ( +g ` R ) |
| 4 |
|
rlocaddval.4 |
|- L = ( R RLocal S ) |
| 5 |
|
rlocaddval.5 |
|- .~ = ( R ~RL S ) |
| 6 |
|
rlocaddval.r |
|- ( ph -> R e. CRing ) |
| 7 |
|
rlocaddval.s |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 9 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 10 |
|
eqid |
|- ( B X. S ) = ( B X. S ) |
| 11 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 12 |
11 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 13 |
12
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B ) |
| 14 |
7 13
|
syl |
|- ( ph -> S C_ B ) |
| 15 |
1 8 2 9 10 4 5 6 14
|
rlocbas |
|- ( ph -> ( ( B X. S ) /. .~ ) = ( Base ` L ) ) |
| 16 |
|
eqidd |
|- ( ph -> ( +g ` L ) = ( +g ` L ) ) |
| 17 |
|
eqidd |
|- ( ph -> ( .r ` L ) = ( .r ` L ) ) |
| 18 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 19 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
| 20 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
| 21 |
6
|
crngringd |
|- ( ph -> R e. Ring ) |
| 22 |
1 8
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. B ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( 0g ` R ) e. B ) |
| 24 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 25 |
11 24
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 26 |
25
|
subm0cl |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> ( 1r ` R ) e. S ) |
| 27 |
7 26
|
syl |
|- ( ph -> ( 1r ` R ) e. S ) |
| 28 |
23 27
|
opelxpd |
|- ( ph -> <. ( 0g ` R ) , ( 1r ` R ) >. e. ( B X. S ) ) |
| 29 |
5
|
ovexi |
|- .~ e. _V |
| 30 |
29
|
ecelqsi |
|- ( <. ( 0g ` R ) , ( 1r ` R ) >. e. ( B X. S ) -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 31 |
28 30
|
syl |
|- ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 32 |
31 15
|
eleqtrd |
|- ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ e. ( Base ` L ) ) |
| 33 |
15
|
eleq2d |
|- ( ph -> ( x e. ( ( B X. S ) /. .~ ) <-> x e. ( Base ` L ) ) ) |
| 34 |
33
|
biimpar |
|- ( ( ph /\ x e. ( Base ` L ) ) -> x e. ( ( B X. S ) /. .~ ) ) |
| 35 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> x = [ <. a , b >. ] .~ ) |
| 36 |
35
|
oveq2d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) ) |
| 37 |
21
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. Ring ) |
| 38 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 39 |
38 13
|
syl |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> S C_ B ) |
| 40 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b e. S ) |
| 41 |
39 40
|
sseldd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b e. B ) |
| 42 |
1 2 8 37 41
|
ringlzd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) .x. b ) = ( 0g ` R ) ) |
| 43 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> a e. B ) |
| 44 |
1 2 24 37 43
|
ringridmd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( a .x. ( 1r ` R ) ) = a ) |
| 45 |
42 44
|
oveq12d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) = ( ( 0g ` R ) ( +g ` R ) a ) ) |
| 46 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 47 |
37
|
ringgrpd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. Grp ) |
| 48 |
1 46 8 47 43
|
grplidd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) ( +g ` R ) a ) = a ) |
| 49 |
45 48
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) = a ) |
| 50 |
1 2 24 37 41
|
ringlidmd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 1r ` R ) .x. b ) = b ) |
| 51 |
49 50
|
opeq12d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) , ( ( 1r ` R ) .x. b ) >. = <. a , b >. ) |
| 52 |
51
|
eceq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) , ( ( 1r ` R ) .x. b ) >. ] .~ = [ <. a , b >. ] .~ ) |
| 53 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> R e. CRing ) |
| 54 |
23
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( 0g ` R ) e. B ) |
| 55 |
38 26
|
syl |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( 1r ` R ) e. S ) |
| 56 |
1 2 46 4 5 53 38 54 43 55 40 20
|
rlocaddval |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( ( ( 0g ` R ) .x. b ) ( +g ` R ) ( a .x. ( 1r ` R ) ) ) , ( ( 1r ` R ) .x. b ) >. ] .~ ) |
| 57 |
52 56 35
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = x ) |
| 58 |
36 57
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = x ) |
| 59 |
|
simpr |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> x e. ( ( B X. S ) /. .~ ) ) |
| 60 |
59
|
elrlocbasi |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> E. a e. B E. b e. S x = [ <. a , b >. ] .~ ) |
| 61 |
58 60
|
r19.29vva |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = x ) |
| 62 |
34 61
|
syldan |
|- ( ( ph /\ x e. ( Base ` L ) ) -> ( [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ( +g ` L ) x ) = x ) |
| 63 |
1 2 3 4 5 53 38 43 54 40 55 20
|
rlocaddval |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = [ <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ ) |
| 64 |
35
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) ) |
| 65 |
44 42
|
oveq12d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) = ( a .+ ( 0g ` R ) ) ) |
| 66 |
1 3 8 47 43
|
grpridd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( a .+ ( 0g ` R ) ) = a ) |
| 67 |
65 66
|
eqtr2d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> a = ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) ) |
| 68 |
1 2 24 37 41
|
ringridmd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( b .x. ( 1r ` R ) ) = b ) |
| 69 |
68
|
eqcomd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> b = ( b .x. ( 1r ` R ) ) ) |
| 70 |
67 69
|
opeq12d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. a , b >. = <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. ) |
| 71 |
70
|
eceq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. a , b >. ] .~ = [ <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ ) |
| 72 |
35 71
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> x = [ <. ( ( a .x. ( 1r ` R ) ) .+ ( ( 0g ` R ) .x. b ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ ) |
| 73 |
63 64 72
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = x ) |
| 74 |
73 60
|
r19.29vva |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = x ) |
| 75 |
34 74
|
syldan |
|- ( ( ph /\ x e. ( Base ` L ) ) -> ( x ( +g ` L ) [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) = x ) |
| 76 |
18 19 20 32 62 75
|
ismgmid2 |
|- ( ph -> [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ = ( 0g ` L ) ) |
| 77 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> x = [ <. a , b >. ] .~ ) |
| 78 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> y = [ <. c , d >. ] .~ ) |
| 79 |
77 78
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( +g ` L ) y ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ) |
| 80 |
6
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> R e. CRing ) |
| 81 |
7
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 82 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> a e. B ) |
| 83 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> c e. B ) |
| 84 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> b e. S ) |
| 85 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> d e. S ) |
| 86 |
1 2 3 4 5 80 81 82 83 84 85 20
|
rlocaddval |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) = [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ) |
| 87 |
80
|
crnggrpd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> R e. Grp ) |
| 88 |
21
|
ad8antr |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> R e. Ring ) |
| 89 |
81 13
|
syl |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> S C_ B ) |
| 90 |
89 85
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> d e. B ) |
| 91 |
1 2 88 82 90
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( a .x. d ) e. B ) |
| 92 |
89 84
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> b e. B ) |
| 93 |
1 2 88 83 92
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( c .x. b ) e. B ) |
| 94 |
1 3 87 91 93
|
grpcld |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( a .x. d ) .+ ( c .x. b ) ) e. B ) |
| 95 |
11 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
| 96 |
95 81 84 85
|
submcld |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( b .x. d ) e. S ) |
| 97 |
94 96
|
opelxpd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. e. ( B X. S ) ) |
| 98 |
29
|
ecelqsi |
|- ( <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. e. ( B X. S ) -> [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 99 |
97 98
|
syl |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 100 |
86 99
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) e. ( ( B X. S ) /. .~ ) ) |
| 101 |
79 100
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 102 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> y e. ( ( B X. S ) /. .~ ) ) |
| 103 |
102
|
elrlocbasi |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> E. c e. B E. d e. S y = [ <. c , d >. ] .~ ) |
| 104 |
101 103
|
r19.29vva |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 105 |
|
simplr |
|- ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> x e. ( ( B X. S ) /. .~ ) ) |
| 106 |
105
|
elrlocbasi |
|- ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> E. a e. B E. b e. S x = [ <. a , b >. ] .~ ) |
| 107 |
104 106
|
r19.29vva |
|- ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 108 |
107
|
3impa |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( +g ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 109 |
6
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> R e. CRing ) |
| 110 |
109
|
crnggrpd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> R e. Grp ) |
| 111 |
21
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> R e. Ring ) |
| 112 |
|
simp-9r |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> a e. B ) |
| 113 |
7
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 114 |
113 13
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> S C_ B ) |
| 115 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> d e. S ) |
| 116 |
114 115
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> d e. B ) |
| 117 |
1 2 111 112 116
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. d ) e. B ) |
| 118 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> f e. S ) |
| 119 |
114 118
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> f e. B ) |
| 120 |
1 2 111 117 119
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .x. f ) e. B ) |
| 121 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> c e. B ) |
| 122 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> b e. S ) |
| 123 |
114 122
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> b e. B ) |
| 124 |
1 2 111 121 123
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( c .x. b ) e. B ) |
| 125 |
1 2 111 124 119
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. b ) .x. f ) e. B ) |
| 126 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> e e. B ) |
| 127 |
1 2 111 123 116
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. d ) e. B ) |
| 128 |
1 2 111 126 127
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. ( b .x. d ) ) e. B ) |
| 129 |
1 3 110 120 125 128
|
grpassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) .+ ( e .x. ( b .x. d ) ) ) = ( ( ( a .x. d ) .x. f ) .+ ( ( ( c .x. b ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) ) ) |
| 130 |
1 2 111 112 116 119
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .x. f ) = ( a .x. ( d .x. f ) ) ) |
| 131 |
1 2 109 121 123 119
|
crng32d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. b ) .x. f ) = ( ( c .x. f ) .x. b ) ) |
| 132 |
1 2 109 126 123 116
|
crng12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. ( b .x. d ) ) = ( b .x. ( e .x. d ) ) ) |
| 133 |
1 2 111 126 116
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. d ) e. B ) |
| 134 |
1 2 109 123 133
|
crngcomd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( e .x. d ) ) = ( ( e .x. d ) .x. b ) ) |
| 135 |
132 134
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( e .x. ( b .x. d ) ) = ( ( e .x. d ) .x. b ) ) |
| 136 |
131 135
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( c .x. b ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) = ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) |
| 137 |
130 136
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .x. f ) .+ ( ( ( c .x. b ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) ) |
| 138 |
129 137
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) .+ ( e .x. ( b .x. d ) ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) ) |
| 139 |
1 3 2 111 117 124 119
|
ringdird |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) = ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) ) |
| 140 |
139
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) = ( ( ( ( a .x. d ) .x. f ) .+ ( ( c .x. b ) .x. f ) ) .+ ( e .x. ( b .x. d ) ) ) ) |
| 141 |
1 2 111 121 119
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( c .x. f ) e. B ) |
| 142 |
1 3 2 111 141 133 123
|
ringdird |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) = ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) |
| 143 |
142
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .x. b ) .+ ( ( e .x. d ) .x. b ) ) ) ) |
| 144 |
138 140 143
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) = ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) ) |
| 145 |
1 2 111 123 116 119
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) = ( b .x. ( d .x. f ) ) ) |
| 146 |
144 145
|
opeq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. f ) >. = <. ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) , ( b .x. ( d .x. f ) ) >. ) |
| 147 |
146
|
eceq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. f ) >. ] .~ = [ <. ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) , ( b .x. ( d .x. f ) ) >. ] .~ ) |
| 148 |
1 3 110 117 124
|
grpcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .+ ( c .x. b ) ) e. B ) |
| 149 |
95 113 122 115
|
submcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. d ) e. S ) |
| 150 |
1 2 3 4 5 109 113 148 126 149 118 20
|
rlocaddval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. f ) .+ ( e .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. f ) >. ] .~ ) |
| 151 |
1 3 110 141 133
|
grpcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. f ) .+ ( e .x. d ) ) e. B ) |
| 152 |
95 113 115 118
|
submcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( d .x. f ) e. S ) |
| 153 |
1 2 3 4 5 109 113 112 151 122 152 20
|
rlocaddval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) = [ <. ( ( a .x. ( d .x. f ) ) .+ ( ( ( c .x. f ) .+ ( e .x. d ) ) .x. b ) ) , ( b .x. ( d .x. f ) ) >. ] .~ ) |
| 154 |
147 150 153
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) ) |
| 155 |
1 2 3 4 5 109 113 112 121 122 115 20
|
rlocaddval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) = [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ) |
| 156 |
155
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) |
| 157 |
1 2 3 4 5 109 113 121 126 115 118 20
|
rlocaddval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) |
| 158 |
157
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( +g ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) ) |
| 159 |
154 156 158
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( +g ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) ) |
| 160 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> x = [ <. a , b >. ] .~ ) |
| 161 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> y = [ <. c , d >. ] .~ ) |
| 162 |
160 161
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( +g ` L ) y ) = ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ) |
| 163 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> z = [ <. e , f >. ] .~ ) |
| 164 |
162 163
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) [ <. e , f >. ] .~ ) ) |
| 165 |
161 163
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( y ( +g ` L ) z ) = ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) |
| 166 |
160 165
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( +g ` L ) ( y ( +g ` L ) z ) ) = ( [ <. a , b >. ] .~ ( +g ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) ) |
| 167 |
159 164 166
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) ) |
| 168 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> z e. ( ( B X. S ) /. .~ ) ) |
| 169 |
168
|
ad6antr |
|- ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> z e. ( ( B X. S ) /. .~ ) ) |
| 170 |
169
|
elrlocbasi |
|- ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> E. e e. B E. f e. S z = [ <. e , f >. ] .~ ) |
| 171 |
167 170
|
r19.29vva |
|- ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) ) |
| 172 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> y e. ( ( B X. S ) /. .~ ) ) |
| 173 |
172
|
ad5ant12 |
|- ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> y e. ( ( B X. S ) /. .~ ) ) |
| 174 |
173
|
elrlocbasi |
|- ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> E. c e. B E. d e. S y = [ <. c , d >. ] .~ ) |
| 175 |
171 174
|
r19.29vva |
|- ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) ) |
| 176 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> x e. ( ( B X. S ) /. .~ ) ) |
| 177 |
176
|
elrlocbasi |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> E. a e. B E. b e. S x = [ <. a , b >. ] .~ ) |
| 178 |
175 177
|
r19.29vva |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( ( x ( +g ` L ) y ) ( +g ` L ) z ) = ( x ( +g ` L ) ( y ( +g ` L ) z ) ) ) |
| 179 |
15 16 108 178 31 61 74
|
ismndd |
|- ( ph -> L e. Mnd ) |
| 180 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 181 |
1 180 47 43
|
grpinvcld |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( invg ` R ) ` a ) e. B ) |
| 182 |
181 40
|
opelxpd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( invg ` R ) ` a ) , b >. e. ( B X. S ) ) |
| 183 |
29
|
ecelqsi |
|- ( <. ( ( invg ` R ) ` a ) , b >. e. ( B X. S ) -> [ <. ( ( invg ` R ) ` a ) , b >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 184 |
182 183
|
syl |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( invg ` R ) ` a ) , b >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 185 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) |
| 186 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> x = [ <. a , b >. ] .~ ) |
| 187 |
185 186
|
oveq12d |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> ( u ( +g ` L ) x ) = ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) ) |
| 188 |
187
|
eqeq1d |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ u = [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ) -> ( ( u ( +g ` L ) x ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ <-> ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) ) |
| 189 |
1 2 3 4 5 53 38 181 43 40 40 20
|
rlocaddval |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) , ( b .x. b ) >. ] .~ ) |
| 190 |
1 3 8 180 47 43
|
grplinvd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( invg ` R ) ` a ) .+ a ) = ( 0g ` R ) ) |
| 191 |
190
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( ( invg ` R ) ` a ) .+ a ) .x. b ) = ( ( 0g ` R ) .x. b ) ) |
| 192 |
1 3 2 37 181 43 41
|
ringdird |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( ( invg ` R ) ` a ) .+ a ) .x. b ) = ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) ) |
| 193 |
191 192 42
|
3eqtr3d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) = ( 0g ` R ) ) |
| 194 |
193
|
opeq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) , ( b .x. b ) >. = <. ( 0g ` R ) , ( b .x. b ) >. ) |
| 195 |
194
|
eceq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( ( ( invg ` R ) ` a ) .x. b ) .+ ( a .x. b ) ) , ( b .x. b ) >. ] .~ = [ <. ( 0g ` R ) , ( b .x. b ) >. ] .~ ) |
| 196 |
1 8 24 2 9 10 5 6 7
|
erler |
|- ( ph -> .~ Er ( B X. S ) ) |
| 197 |
196
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> .~ Er ( B X. S ) ) |
| 198 |
|
eqidd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( 0g ` R ) , ( b .x. b ) >. = <. ( 0g ` R ) , ( b .x. b ) >. ) |
| 199 |
|
eqidd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( 0g ` R ) , ( 1r ` R ) >. = <. ( 0g ` R ) , ( 1r ` R ) >. ) |
| 200 |
95 38 40 40
|
submcld |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( b .x. b ) e. S ) |
| 201 |
1 2 24 37 54
|
ringridmd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) .x. ( 1r ` R ) ) = ( 0g ` R ) ) |
| 202 |
39 200
|
sseldd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( b .x. b ) e. B ) |
| 203 |
1 2 8 37 202
|
ringlzd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) .x. ( b .x. b ) ) = ( 0g ` R ) ) |
| 204 |
201 203
|
oveq12d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) = ( ( 0g ` R ) ( -g ` R ) ( 0g ` R ) ) ) |
| 205 |
1 8 9
|
grpsubid |
|- ( ( R e. Grp /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) ( -g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 206 |
47 54 205
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 0g ` R ) ( -g ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 207 |
204 206
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) = ( 0g ` R ) ) |
| 208 |
207
|
oveq2d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( b .x. b ) .x. ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) ) = ( ( b .x. b ) .x. ( 0g ` R ) ) ) |
| 209 |
1 2 8 37 202
|
ringrzd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( b .x. b ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 210 |
208 209
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( b .x. b ) .x. ( ( ( 0g ` R ) .x. ( 1r ` R ) ) ( -g ` R ) ( ( 0g ` R ) .x. ( b .x. b ) ) ) ) = ( 0g ` R ) ) |
| 211 |
1 5 39 8 2 9 198 199 54 54 200 55 200 210
|
erlbrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( 0g ` R ) , ( b .x. b ) >. .~ <. ( 0g ` R ) , ( 1r ` R ) >. ) |
| 212 |
197 211
|
erthi |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( 0g ` R ) , ( b .x. b ) >. ] .~ = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) |
| 213 |
189 195 212
|
3eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( ( invg ` R ) ` a ) , b >. ] .~ ( +g ` L ) [ <. a , b >. ] .~ ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) |
| 214 |
184 188 213
|
rspcedvd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> E. u e. ( ( B X. S ) /. .~ ) ( u ( +g ` L ) x ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) |
| 215 |
214 60
|
r19.29vva |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> E. u e. ( ( B X. S ) /. .~ ) ( u ( +g ` L ) x ) = [ <. ( 0g ` R ) , ( 1r ` R ) >. ] .~ ) |
| 216 |
15 16 76 179 215
|
isgrpd2e |
|- ( ph -> L e. Grp ) |
| 217 |
77 78
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) y ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ) |
| 218 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
| 219 |
1 2 3 4 5 80 81 82 83 84 85 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) = [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ) |
| 220 |
1 2 88 82 83
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( a .x. c ) e. B ) |
| 221 |
220 96
|
opelxpd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> <. ( a .x. c ) , ( b .x. d ) >. e. ( B X. S ) ) |
| 222 |
29
|
ecelqsi |
|- ( <. ( a .x. c ) , ( b .x. d ) >. e. ( B X. S ) -> [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 223 |
221 222
|
syl |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 224 |
219 223
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) e. ( ( B X. S ) /. .~ ) ) |
| 225 |
217 224
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 226 |
225 103
|
r19.29vva |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 227 |
226 106
|
r19.29vva |
|- ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 228 |
227
|
3impa |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) e. ( ( B X. S ) /. .~ ) ) |
| 229 |
1 2 111 112 121 126
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. c ) .x. e ) = ( a .x. ( c .x. e ) ) ) |
| 230 |
229 145
|
opeq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( a .x. c ) .x. e ) , ( ( b .x. d ) .x. f ) >. = <. ( a .x. ( c .x. e ) ) , ( b .x. ( d .x. f ) ) >. ) |
| 231 |
230
|
eceq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( ( a .x. c ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ = [ <. ( a .x. ( c .x. e ) ) , ( b .x. ( d .x. f ) ) >. ] .~ ) |
| 232 |
1 2 111 112 121
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. c ) e. B ) |
| 233 |
1 2 3 4 5 109 113 232 126 149 118 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( a .x. c ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ ) |
| 234 |
1 2 111 121 126
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( c .x. e ) e. B ) |
| 235 |
1 2 3 4 5 109 113 112 234 122 152 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) = [ <. ( a .x. ( c .x. e ) ) , ( b .x. ( d .x. f ) ) >. ] .~ ) |
| 236 |
231 233 235
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) ) |
| 237 |
1 2 3 4 5 109 113 112 121 122 115 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) = [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ) |
| 238 |
237
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) |
| 239 |
1 2 3 4 5 109 113 121 126 115 118 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) |
| 240 |
239
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) ) |
| 241 |
236 238 240
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) ) |
| 242 |
160 161
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) y ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ) |
| 243 |
242 163
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) ) |
| 244 |
161 163
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( y ( .r ` L ) z ) = ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) |
| 245 |
160 244
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) ( y ( .r ` L ) z ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) ) |
| 246 |
241 243 245
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) ) |
| 247 |
246 170
|
r19.29vva |
|- ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) ) |
| 248 |
247 174
|
r19.29vva |
|- ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) ) |
| 249 |
248 177
|
r19.29vva |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( ( x ( .r ` L ) y ) ( .r ` L ) z ) = ( x ( .r ` L ) ( y ( .r ` L ) z ) ) ) |
| 250 |
196
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> .~ Er ( B X. S ) ) |
| 251 |
|
eqidd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. = <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. ) |
| 252 |
1 2 111 112 123
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. b ) e. B ) |
| 253 |
1 3 2 111 252 141 133
|
ringdid |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. b ) .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) = ( ( ( a .x. b ) .x. ( c .x. f ) ) .+ ( ( a .x. b ) .x. ( e .x. d ) ) ) ) |
| 254 |
1 2 111 112 123 151
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. b ) .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) = ( a .x. ( b .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) ) |
| 255 |
253 254
|
eqtr3d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. b ) .x. ( c .x. f ) ) .+ ( ( a .x. b ) .x. ( e .x. d ) ) ) = ( a .x. ( b .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) ) |
| 256 |
11
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 257 |
6 256
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 258 |
257
|
ad10antr |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( mulGrp ` R ) e. CMnd ) |
| 259 |
12 95 258 112 121 123 119
|
cmn4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. c ) .x. ( b .x. f ) ) = ( ( a .x. b ) .x. ( c .x. f ) ) ) |
| 260 |
12 95 258 112 126 123 116
|
cmn4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. e ) .x. ( b .x. d ) ) = ( ( a .x. b ) .x. ( e .x. d ) ) ) |
| 261 |
259 260
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) = ( ( ( a .x. b ) .x. ( c .x. f ) ) .+ ( ( a .x. b ) .x. ( e .x. d ) ) ) ) |
| 262 |
1 2 109 123 112 151
|
crng12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) = ( a .x. ( b .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) ) |
| 263 |
255 261 262
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) = ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) ) |
| 264 |
1 2 109 127 123 119
|
crng12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. ( b .x. f ) ) = ( b .x. ( ( b .x. d ) .x. f ) ) ) |
| 265 |
145
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( ( b .x. d ) .x. f ) ) = ( b .x. ( b .x. ( d .x. f ) ) ) ) |
| 266 |
264 265
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. ( b .x. f ) ) = ( b .x. ( b .x. ( d .x. f ) ) ) ) |
| 267 |
263 266
|
opeq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. = <. ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) , ( b .x. ( b .x. ( d .x. f ) ) ) >. ) |
| 268 |
1 2 111 112 151
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) e. B ) |
| 269 |
1 2 111 123 268
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) e. B ) |
| 270 |
95 113 122 152
|
submcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( d .x. f ) ) e. S ) |
| 271 |
95 113 122 270
|
submcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( b .x. ( d .x. f ) ) ) e. S ) |
| 272 |
|
eqidd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) = ( b .x. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) ) ) |
| 273 |
|
eqidd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. ( b .x. ( d .x. f ) ) ) = ( b .x. ( b .x. ( d .x. f ) ) ) ) |
| 274 |
1 5 109 113 2 251 267 268 269 270 271 122 272 273
|
erlbr2d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. .~ <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. ) |
| 275 |
250 274
|
erthi |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. ] .~ = [ <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. ] .~ ) |
| 276 |
1 2 3 4 5 109 113 112 151 122 152 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) = [ <. ( a .x. ( ( c .x. f ) .+ ( e .x. d ) ) ) , ( b .x. ( d .x. f ) ) >. ] .~ ) |
| 277 |
1 2 111 112 126
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( a .x. e ) e. B ) |
| 278 |
95 113 122 118
|
submcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. f ) e. S ) |
| 279 |
1 2 3 4 5 109 113 232 277 149 278 20
|
rlocaddval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ) = [ <. ( ( ( a .x. c ) .x. ( b .x. f ) ) .+ ( ( a .x. e ) .x. ( b .x. d ) ) ) , ( ( b .x. d ) .x. ( b .x. f ) ) >. ] .~ ) |
| 280 |
275 276 279
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) = ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ) ) |
| 281 |
157
|
oveq2d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( ( c .x. f ) .+ ( e .x. d ) ) , ( d .x. f ) >. ] .~ ) ) |
| 282 |
1 2 3 4 5 109 113 112 126 122 118 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ) |
| 283 |
237 282
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ ( +g ` L ) [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ) ) |
| 284 |
280 281 283
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) ) |
| 285 |
160 165
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( [ <. a , b >. ] .~ ( .r ` L ) ( [ <. c , d >. ] .~ ( +g ` L ) [ <. e , f >. ] .~ ) ) ) |
| 286 |
160 163
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) z ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) |
| 287 |
242 286
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) ( +g ` L ) ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) ) |
| 288 |
284 285 287
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) ) |
| 289 |
288 170
|
r19.29vva |
|- ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) ) |
| 290 |
289 174
|
r19.29vva |
|- ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) ) |
| 291 |
290 177
|
r19.29vva |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( x ( .r ` L ) ( y ( +g ` L ) z ) ) = ( ( x ( .r ` L ) y ) ( +g ` L ) ( x ( .r ` L ) z ) ) ) |
| 292 |
1 3 2 111 117 124 126
|
ringdird |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) = ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) |
| 293 |
292
|
opeq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. = <. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) , ( ( b .x. d ) .x. f ) >. ) |
| 294 |
1 2 111 117 126 119
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .x. e ) .x. f ) = ( ( a .x. d ) .x. ( e .x. f ) ) ) |
| 295 |
1 2 111 117 126
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. d ) .x. e ) e. B ) |
| 296 |
1 2 109 119 295
|
crngcomd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( a .x. d ) .x. e ) ) = ( ( ( a .x. d ) .x. e ) .x. f ) ) |
| 297 |
12 95 258 112 126 116 119
|
cmn4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. e ) .x. ( d .x. f ) ) = ( ( a .x. d ) .x. ( e .x. f ) ) ) |
| 298 |
294 296 297
|
3eqtr4rd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( a .x. e ) .x. ( d .x. f ) ) = ( f .x. ( ( a .x. d ) .x. e ) ) ) |
| 299 |
1 2 111 124 126 119
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( c .x. b ) .x. e ) .x. f ) = ( ( c .x. b ) .x. ( e .x. f ) ) ) |
| 300 |
1 2 111 124 126
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. b ) .x. e ) e. B ) |
| 301 |
1 2 109 119 300
|
crngcomd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( c .x. b ) .x. e ) ) = ( ( ( c .x. b ) .x. e ) .x. f ) ) |
| 302 |
12 95 258 121 126 123 119
|
cmn4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. e ) .x. ( b .x. f ) ) = ( ( c .x. b ) .x. ( e .x. f ) ) ) |
| 303 |
299 301 302
|
3eqtr4rd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( c .x. e ) .x. ( b .x. f ) ) = ( f .x. ( ( c .x. b ) .x. e ) ) ) |
| 304 |
298 303
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) = ( ( f .x. ( ( a .x. d ) .x. e ) ) .+ ( f .x. ( ( c .x. b ) .x. e ) ) ) ) |
| 305 |
1 3 2 111 119 295 300
|
ringdid |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) = ( ( f .x. ( ( a .x. d ) .x. e ) ) .+ ( f .x. ( ( c .x. b ) .x. e ) ) ) ) |
| 306 |
304 305
|
eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) = ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) ) |
| 307 |
114 278
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. f ) e. B ) |
| 308 |
1 2 111 116 307 119
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( d .x. ( b .x. f ) ) .x. f ) = ( d .x. ( ( b .x. f ) .x. f ) ) ) |
| 309 |
1 2 109 123 116
|
crngcomd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( b .x. d ) = ( d .x. b ) ) |
| 310 |
309
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) = ( ( d .x. b ) .x. f ) ) |
| 311 |
1 2 111 116 123 119
|
ringassd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( d .x. b ) .x. f ) = ( d .x. ( b .x. f ) ) ) |
| 312 |
310 311
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) = ( d .x. ( b .x. f ) ) ) |
| 313 |
312
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( b .x. d ) .x. f ) .x. f ) = ( ( d .x. ( b .x. f ) ) .x. f ) ) |
| 314 |
1 2 109 307 116 119
|
crng12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. f ) .x. ( d .x. f ) ) = ( d .x. ( ( b .x. f ) .x. f ) ) ) |
| 315 |
308 313 314
|
3eqtr4rd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. f ) .x. ( d .x. f ) ) = ( ( ( b .x. d ) .x. f ) .x. f ) ) |
| 316 |
306 315
|
opeq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. = <. ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) , ( ( ( b .x. d ) .x. f ) .x. f ) >. ) |
| 317 |
1 3 110 295 300
|
grpcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) e. B ) |
| 318 |
1 2 111 119 317
|
ringcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) e. B ) |
| 319 |
145 270
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) e. S ) |
| 320 |
95 113 319 118
|
submcld |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( b .x. d ) .x. f ) .x. f ) e. S ) |
| 321 |
|
eqidd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) = ( f .x. ( ( ( a .x. d ) .x. e ) .+ ( ( c .x. b ) .x. e ) ) ) ) |
| 322 |
114 319
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( b .x. d ) .x. f ) e. B ) |
| 323 |
1 2 109 322 119
|
crngcomd |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( ( b .x. d ) .x. f ) .x. f ) = ( f .x. ( ( b .x. d ) .x. f ) ) ) |
| 324 |
1 5 109 113 2 293 316 317 318 319 320 118 321 323
|
erlbr2d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. .~ <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. ) |
| 325 |
250 324
|
erthi |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> [ <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ = [ <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. ] .~ ) |
| 326 |
1 2 3 4 5 109 113 148 126 149 118 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = [ <. ( ( ( a .x. d ) .+ ( c .x. b ) ) .x. e ) , ( ( b .x. d ) .x. f ) >. ] .~ ) |
| 327 |
1 2 3 4 5 109 113 277 234 278 152 20
|
rlocaddval |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ( +g ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) = [ <. ( ( ( a .x. e ) .x. ( d .x. f ) ) .+ ( ( c .x. e ) .x. ( b .x. f ) ) ) , ( ( b .x. f ) .x. ( d .x. f ) ) >. ] .~ ) |
| 328 |
325 326 327
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ( +g ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) ) |
| 329 |
155
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( [ <. ( ( a .x. d ) .+ ( c .x. b ) ) , ( b .x. d ) >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) |
| 330 |
282 239
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ( +g ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) = ( [ <. ( a .x. e ) , ( b .x. f ) >. ] .~ ( +g ` L ) [ <. ( c .x. e ) , ( d .x. f ) >. ] .~ ) ) |
| 331 |
328 329 330
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ( +g ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) ) |
| 332 |
162 163
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( [ <. a , b >. ] .~ ( +g ` L ) [ <. c , d >. ] .~ ) ( .r ` L ) [ <. e , f >. ] .~ ) ) |
| 333 |
286 244
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) = ( ( [ <. a , b >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ( +g ` L ) ( [ <. c , d >. ] .~ ( .r ` L ) [ <. e , f >. ] .~ ) ) ) |
| 334 |
331 332 333
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) /\ e e. B ) /\ f e. S ) /\ z = [ <. e , f >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) ) |
| 335 |
334 170
|
r19.29vva |
|- ( ( ( ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) ) |
| 336 |
335 174
|
r19.29vva |
|- ( ( ( ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) ) |
| 337 |
336 177
|
r19.29vva |
|- ( ( ph /\ ( x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) /\ z e. ( ( B X. S ) /. .~ ) ) ) -> ( ( x ( +g ` L ) y ) ( .r ` L ) z ) = ( ( x ( .r ` L ) z ) ( +g ` L ) ( y ( .r ` L ) z ) ) ) |
| 338 |
14 27
|
sseldd |
|- ( ph -> ( 1r ` R ) e. B ) |
| 339 |
338 27
|
opelxpd |
|- ( ph -> <. ( 1r ` R ) , ( 1r ` R ) >. e. ( B X. S ) ) |
| 340 |
29
|
ecelqsi |
|- ( <. ( 1r ` R ) , ( 1r ` R ) >. e. ( B X. S ) -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 341 |
339 340
|
syl |
|- ( ph -> [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ e. ( ( B X. S ) /. .~ ) ) |
| 342 |
35
|
oveq2d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) x ) = ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) ) |
| 343 |
1 2 24 37 43
|
ringlidmd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( ( 1r ` R ) .x. a ) = a ) |
| 344 |
343 50
|
opeq12d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. ( ( 1r ` R ) .x. a ) , ( ( 1r ` R ) .x. b ) >. = <. a , b >. ) |
| 345 |
344
|
eceq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. ( ( 1r ` R ) .x. a ) , ( ( 1r ` R ) .x. b ) >. ] .~ = [ <. a , b >. ] .~ ) |
| 346 |
39 55
|
sseldd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( 1r ` R ) e. B ) |
| 347 |
1 2 3 4 5 53 38 346 43 55 40 218
|
rlocmulval |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = [ <. ( ( 1r ` R ) .x. a ) , ( ( 1r ` R ) .x. b ) >. ] .~ ) |
| 348 |
345 347 35
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = x ) |
| 349 |
342 348
|
eqtrd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) x ) = x ) |
| 350 |
349 60
|
r19.29vva |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ( .r ` L ) x ) = x ) |
| 351 |
1 2 3 4 5 53 38 43 346 40 55 218
|
rlocmulval |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = [ <. ( a .x. ( 1r ` R ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ ) |
| 352 |
35
|
oveq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = ( [ <. a , b >. ] .~ ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) ) |
| 353 |
44
|
eqcomd |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> a = ( a .x. ( 1r ` R ) ) ) |
| 354 |
353 69
|
opeq12d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> <. a , b >. = <. ( a .x. ( 1r ` R ) ) , ( b .x. ( 1r ` R ) ) >. ) |
| 355 |
354
|
eceq1d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> [ <. a , b >. ] .~ = [ <. ( a .x. ( 1r ` R ) ) , ( b .x. ( 1r ` R ) ) >. ] .~ ) |
| 356 |
351 352 355
|
3eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = [ <. a , b >. ] .~ ) |
| 357 |
356 35
|
eqtr4d |
|- ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = x ) |
| 358 |
357 60
|
r19.29vva |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) [ <. ( 1r ` R ) , ( 1r ` R ) >. ] .~ ) = x ) |
| 359 |
1 2 80 82 83
|
crngcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( a .x. c ) = ( c .x. a ) ) |
| 360 |
1 2 80 92 90
|
crngcomd |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( b .x. d ) = ( d .x. b ) ) |
| 361 |
359 360
|
opeq12d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> <. ( a .x. c ) , ( b .x. d ) >. = <. ( c .x. a ) , ( d .x. b ) >. ) |
| 362 |
361
|
eceq1d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> [ <. ( a .x. c ) , ( b .x. d ) >. ] .~ = [ <. ( c .x. a ) , ( d .x. b ) >. ] .~ ) |
| 363 |
1 2 3 4 5 80 81 83 82 85 84 218
|
rlocmulval |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. c , d >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) = [ <. ( c .x. a ) , ( d .x. b ) >. ] .~ ) |
| 364 |
362 219 363
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( [ <. a , b >. ] .~ ( .r ` L ) [ <. c , d >. ] .~ ) = ( [ <. c , d >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) ) |
| 365 |
78 77
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( y ( .r ` L ) x ) = ( [ <. c , d >. ] .~ ( .r ` L ) [ <. a , b >. ] .~ ) ) |
| 366 |
364 217 365
|
3eqtr4d |
|- ( ( ( ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) /\ c e. B ) /\ d e. S ) /\ y = [ <. c , d >. ] .~ ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) ) |
| 367 |
366 103
|
r19.29vva |
|- ( ( ( ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) /\ a e. B ) /\ b e. S ) /\ x = [ <. a , b >. ] .~ ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) ) |
| 368 |
367 106
|
r19.29vva |
|- ( ( ( ph /\ x e. ( ( B X. S ) /. .~ ) ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) ) |
| 369 |
368
|
3impa |
|- ( ( ph /\ x e. ( ( B X. S ) /. .~ ) /\ y e. ( ( B X. S ) /. .~ ) ) -> ( x ( .r ` L ) y ) = ( y ( .r ` L ) x ) ) |
| 370 |
15 16 17 216 228 249 291 337 341 350 358 369
|
iscrngd |
|- ( ph -> L e. CRing ) |