| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erlcl1.b |
|- B = ( Base ` R ) |
| 2 |
|
erlcl1.e |
|- .~ = ( R ~RL S ) |
| 3 |
|
erlcl1.s |
|- ( ph -> S C_ B ) |
| 4 |
|
erldi.1 |
|- .0. = ( 0g ` R ) |
| 5 |
|
erldi.2 |
|- .x. = ( .r ` R ) |
| 6 |
|
erldi.3 |
|- .- = ( -g ` R ) |
| 7 |
|
erlbrd.u |
|- ( ph -> U = <. E , G >. ) |
| 8 |
|
erlbrd.v |
|- ( ph -> V = <. F , H >. ) |
| 9 |
|
erlbrd.e |
|- ( ph -> E e. B ) |
| 10 |
|
erlbrd.f |
|- ( ph -> F e. B ) |
| 11 |
|
erlbrd.g |
|- ( ph -> G e. S ) |
| 12 |
|
erlbrd.h |
|- ( ph -> H e. S ) |
| 13 |
|
erlbrd.1 |
|- ( ph -> T e. S ) |
| 14 |
|
erlbrd.2 |
|- ( ph -> ( T .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) |
| 15 |
9 11
|
opelxpd |
|- ( ph -> <. E , G >. e. ( B X. S ) ) |
| 16 |
7 15
|
eqeltrd |
|- ( ph -> U e. ( B X. S ) ) |
| 17 |
10 12
|
opelxpd |
|- ( ph -> <. F , H >. e. ( B X. S ) ) |
| 18 |
8 17
|
eqeltrd |
|- ( ph -> V e. ( B X. S ) ) |
| 19 |
16 18
|
jca |
|- ( ph -> ( U e. ( B X. S ) /\ V e. ( B X. S ) ) ) |
| 20 |
|
simpr |
|- ( ( ph /\ t = T ) -> t = T ) |
| 21 |
20
|
oveq1d |
|- ( ( ph /\ t = T ) -> ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = ( T .x. ( ( E .x. H ) .- ( F .x. G ) ) ) ) |
| 22 |
21
|
eqeq1d |
|- ( ( ph /\ t = T ) -> ( ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. <-> ( T .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) ) |
| 23 |
13 22 14
|
rspcedvd |
|- ( ph -> E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) |
| 24 |
19 23
|
jca |
|- ( ph -> ( ( U e. ( B X. S ) /\ V e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) ) |
| 25 |
|
eqid |
|- ( B X. S ) = ( B X. S ) |
| 26 |
|
eqid |
|- { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } |
| 27 |
1 4 5 6 25 26 3
|
erlval |
|- ( ph -> ( R ~RL S ) = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) |
| 28 |
2 27
|
eqtrid |
|- ( ph -> .~ = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) |
| 29 |
|
simprl |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> a = U ) |
| 30 |
29
|
fveq2d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` a ) = ( 1st ` U ) ) |
| 31 |
7
|
fveq2d |
|- ( ph -> ( 1st ` U ) = ( 1st ` <. E , G >. ) ) |
| 32 |
|
op1stg |
|- ( ( E e. B /\ G e. S ) -> ( 1st ` <. E , G >. ) = E ) |
| 33 |
9 11 32
|
syl2anc |
|- ( ph -> ( 1st ` <. E , G >. ) = E ) |
| 34 |
31 33
|
eqtrd |
|- ( ph -> ( 1st ` U ) = E ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` U ) = E ) |
| 36 |
30 35
|
eqtrd |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` a ) = E ) |
| 37 |
|
simprr |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> b = V ) |
| 38 |
37
|
fveq2d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` b ) = ( 2nd ` V ) ) |
| 39 |
8
|
fveq2d |
|- ( ph -> ( 2nd ` V ) = ( 2nd ` <. F , H >. ) ) |
| 40 |
|
op2ndg |
|- ( ( F e. B /\ H e. S ) -> ( 2nd ` <. F , H >. ) = H ) |
| 41 |
10 12 40
|
syl2anc |
|- ( ph -> ( 2nd ` <. F , H >. ) = H ) |
| 42 |
39 41
|
eqtrd |
|- ( ph -> ( 2nd ` V ) = H ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` V ) = H ) |
| 44 |
38 43
|
eqtrd |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` b ) = H ) |
| 45 |
36 44
|
oveq12d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( E .x. H ) ) |
| 46 |
37
|
fveq2d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` b ) = ( 1st ` V ) ) |
| 47 |
8
|
fveq2d |
|- ( ph -> ( 1st ` V ) = ( 1st ` <. F , H >. ) ) |
| 48 |
|
op1stg |
|- ( ( F e. B /\ H e. S ) -> ( 1st ` <. F , H >. ) = F ) |
| 49 |
10 12 48
|
syl2anc |
|- ( ph -> ( 1st ` <. F , H >. ) = F ) |
| 50 |
47 49
|
eqtrd |
|- ( ph -> ( 1st ` V ) = F ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` V ) = F ) |
| 52 |
46 51
|
eqtrd |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` b ) = F ) |
| 53 |
29
|
fveq2d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` a ) = ( 2nd ` U ) ) |
| 54 |
7
|
fveq2d |
|- ( ph -> ( 2nd ` U ) = ( 2nd ` <. E , G >. ) ) |
| 55 |
|
op2ndg |
|- ( ( E e. B /\ G e. S ) -> ( 2nd ` <. E , G >. ) = G ) |
| 56 |
9 11 55
|
syl2anc |
|- ( ph -> ( 2nd ` <. E , G >. ) = G ) |
| 57 |
54 56
|
eqtrd |
|- ( ph -> ( 2nd ` U ) = G ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` U ) = G ) |
| 59 |
53 58
|
eqtrd |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` a ) = G ) |
| 60 |
52 59
|
oveq12d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( F .x. G ) ) |
| 61 |
45 60
|
oveq12d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( E .x. H ) .- ( F .x. G ) ) ) |
| 62 |
61
|
oveq2d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) ) |
| 63 |
62
|
eqeq1d |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) ) |
| 64 |
63
|
rexbidv |
|- ( ( ph /\ ( a = U /\ b = V ) ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) ) |
| 65 |
28 64
|
brab2d |
|- ( ph -> ( U .~ V <-> ( ( U e. ( B X. S ) /\ V e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) ) ) |
| 66 |
24 65
|
mpbird |
|- ( ph -> U .~ V ) |