| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erlbr2d.b |
|- B = ( Base ` R ) |
| 2 |
|
erlbr2d.q |
|- .~ = ( R ~RL S ) |
| 3 |
|
erlbr2d.r |
|- ( ph -> R e. CRing ) |
| 4 |
|
erlbr2d.s |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 5 |
|
erlbr2d.m |
|- .x. = ( .r ` R ) |
| 6 |
|
erlbr2d.u |
|- ( ph -> U = <. E , G >. ) |
| 7 |
|
erlbr2d.v |
|- ( ph -> V = <. F , H >. ) |
| 8 |
|
erlbr2d.e |
|- ( ph -> E e. B ) |
| 9 |
|
erlbr2d.f |
|- ( ph -> F e. B ) |
| 10 |
|
erlbr2d.g |
|- ( ph -> G e. S ) |
| 11 |
|
erlbr2d.h |
|- ( ph -> H e. S ) |
| 12 |
|
erlbr2d.1 |
|- ( ph -> T e. S ) |
| 13 |
|
erlbr2d.2 |
|- ( ph -> F = ( T .x. E ) ) |
| 14 |
|
erlbr2d.3 |
|- ( ph -> H = ( T .x. G ) ) |
| 15 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 16 |
15 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 17 |
16
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B ) |
| 18 |
4 17
|
syl |
|- ( ph -> S C_ B ) |
| 19 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 20 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 21 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 22 |
15 21
|
ringidval |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 23 |
22
|
subm0cl |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> ( 1r ` R ) e. S ) |
| 24 |
4 23
|
syl |
|- ( ph -> ( 1r ` R ) e. S ) |
| 25 |
14
|
oveq2d |
|- ( ph -> ( E .x. H ) = ( E .x. ( T .x. G ) ) ) |
| 26 |
13
|
oveq1d |
|- ( ph -> ( F .x. G ) = ( ( T .x. E ) .x. G ) ) |
| 27 |
25 26
|
oveq12d |
|- ( ph -> ( ( E .x. H ) ( -g ` R ) ( F .x. G ) ) = ( ( E .x. ( T .x. G ) ) ( -g ` R ) ( ( T .x. E ) .x. G ) ) ) |
| 28 |
18 12
|
sseldd |
|- ( ph -> T e. B ) |
| 29 |
18 10
|
sseldd |
|- ( ph -> G e. B ) |
| 30 |
1 5 3 28 8 29
|
crng32d |
|- ( ph -> ( ( T .x. E ) .x. G ) = ( ( T .x. G ) .x. E ) ) |
| 31 |
3
|
crngringd |
|- ( ph -> R e. Ring ) |
| 32 |
1 5 31 28 29
|
ringcld |
|- ( ph -> ( T .x. G ) e. B ) |
| 33 |
1 5 3 32 8
|
crngcomd |
|- ( ph -> ( ( T .x. G ) .x. E ) = ( E .x. ( T .x. G ) ) ) |
| 34 |
30 33
|
eqtrd |
|- ( ph -> ( ( T .x. E ) .x. G ) = ( E .x. ( T .x. G ) ) ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( ( E .x. ( T .x. G ) ) ( -g ` R ) ( ( T .x. E ) .x. G ) ) = ( ( E .x. ( T .x. G ) ) ( -g ` R ) ( E .x. ( T .x. G ) ) ) ) |
| 36 |
3
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 37 |
1 5 31 8 32
|
ringcld |
|- ( ph -> ( E .x. ( T .x. G ) ) e. B ) |
| 38 |
1 19 20
|
grpsubid |
|- ( ( R e. Grp /\ ( E .x. ( T .x. G ) ) e. B ) -> ( ( E .x. ( T .x. G ) ) ( -g ` R ) ( E .x. ( T .x. G ) ) ) = ( 0g ` R ) ) |
| 39 |
36 37 38
|
syl2anc |
|- ( ph -> ( ( E .x. ( T .x. G ) ) ( -g ` R ) ( E .x. ( T .x. G ) ) ) = ( 0g ` R ) ) |
| 40 |
27 35 39
|
3eqtrd |
|- ( ph -> ( ( E .x. H ) ( -g ` R ) ( F .x. G ) ) = ( 0g ` R ) ) |
| 41 |
40
|
oveq2d |
|- ( ph -> ( ( 1r ` R ) .x. ( ( E .x. H ) ( -g ` R ) ( F .x. G ) ) ) = ( ( 1r ` R ) .x. ( 0g ` R ) ) ) |
| 42 |
18 24
|
sseldd |
|- ( ph -> ( 1r ` R ) e. B ) |
| 43 |
1 5 19 31 42
|
ringrzd |
|- ( ph -> ( ( 1r ` R ) .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 44 |
41 43
|
eqtrd |
|- ( ph -> ( ( 1r ` R ) .x. ( ( E .x. H ) ( -g ` R ) ( F .x. G ) ) ) = ( 0g ` R ) ) |
| 45 |
1 2 18 19 5 20 6 7 8 9 10 11 24 44
|
erlbrd |
|- ( ph -> U .~ V ) |