| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erlbr2d.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
erlbr2d.q |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
| 3 |
|
erlbr2d.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 4 |
|
erlbr2d.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 5 |
|
erlbr2d.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
erlbr2d.u |
⊢ ( 𝜑 → 𝑈 = 〈 𝐸 , 𝐺 〉 ) |
| 7 |
|
erlbr2d.v |
⊢ ( 𝜑 → 𝑉 = 〈 𝐹 , 𝐻 〉 ) |
| 8 |
|
erlbr2d.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
| 9 |
|
erlbr2d.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 10 |
|
erlbr2d.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |
| 11 |
|
erlbr2d.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑆 ) |
| 12 |
|
erlbr2d.1 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 13 |
|
erlbr2d.2 |
⊢ ( 𝜑 → 𝐹 = ( 𝑇 · 𝐸 ) ) |
| 14 |
|
erlbr2d.3 |
⊢ ( 𝜑 → 𝐻 = ( 𝑇 · 𝐺 ) ) |
| 15 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 16 |
15 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 17 |
16
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆 ⊆ 𝐵 ) |
| 18 |
4 17
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 20 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 21 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 22 |
15 21
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 23 |
22
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 24 |
4 23
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 25 |
14
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 · 𝐻 ) = ( 𝐸 · ( 𝑇 · 𝐺 ) ) ) |
| 26 |
13
|
oveq1d |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( ( 𝑇 · 𝐸 ) · 𝐺 ) ) |
| 27 |
25 26
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐹 · 𝐺 ) ) = ( ( 𝐸 · ( 𝑇 · 𝐺 ) ) ( -g ‘ 𝑅 ) ( ( 𝑇 · 𝐸 ) · 𝐺 ) ) ) |
| 28 |
18 12
|
sseldd |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
| 29 |
18 10
|
sseldd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 30 |
1 5 3 28 8 29
|
crng32d |
⊢ ( 𝜑 → ( ( 𝑇 · 𝐸 ) · 𝐺 ) = ( ( 𝑇 · 𝐺 ) · 𝐸 ) ) |
| 31 |
3
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 32 |
1 5 31 28 29
|
ringcld |
⊢ ( 𝜑 → ( 𝑇 · 𝐺 ) ∈ 𝐵 ) |
| 33 |
1 5 3 32 8
|
crngcomd |
⊢ ( 𝜑 → ( ( 𝑇 · 𝐺 ) · 𝐸 ) = ( 𝐸 · ( 𝑇 · 𝐺 ) ) ) |
| 34 |
30 33
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑇 · 𝐸 ) · 𝐺 ) = ( 𝐸 · ( 𝑇 · 𝐺 ) ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 · ( 𝑇 · 𝐺 ) ) ( -g ‘ 𝑅 ) ( ( 𝑇 · 𝐸 ) · 𝐺 ) ) = ( ( 𝐸 · ( 𝑇 · 𝐺 ) ) ( -g ‘ 𝑅 ) ( 𝐸 · ( 𝑇 · 𝐺 ) ) ) ) |
| 36 |
3
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 37 |
1 5 31 8 32
|
ringcld |
⊢ ( 𝜑 → ( 𝐸 · ( 𝑇 · 𝐺 ) ) ∈ 𝐵 ) |
| 38 |
1 19 20
|
grpsubid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐸 · ( 𝑇 · 𝐺 ) ) ∈ 𝐵 ) → ( ( 𝐸 · ( 𝑇 · 𝐺 ) ) ( -g ‘ 𝑅 ) ( 𝐸 · ( 𝑇 · 𝐺 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 39 |
36 37 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐸 · ( 𝑇 · 𝐺 ) ) ( -g ‘ 𝑅 ) ( 𝐸 · ( 𝑇 · 𝐺 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 40 |
27 35 39
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐹 · 𝐺 ) ) = ( 0g ‘ 𝑅 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐹 · 𝐺 ) ) ) = ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) ) |
| 42 |
18 24
|
sseldd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 43 |
1 5 19 31 42
|
ringrzd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 44 |
41 43
|
eqtrd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · ( ( 𝐸 · 𝐻 ) ( -g ‘ 𝑅 ) ( 𝐹 · 𝐺 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 45 |
1 2 18 19 5 20 6 7 8 9 10 11 24 44
|
erlbrd |
⊢ ( 𝜑 → 𝑈 ∼ 𝑉 ) |