| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rloc0g.1 |
|- .0. = ( 0g ` R ) |
| 2 |
|
rloc0g.2 |
|- .1. = ( 1r ` R ) |
| 3 |
|
rloc0g.3 |
|- L = ( R RLocal S ) |
| 4 |
|
rloc0g.4 |
|- .~ = ( R ~RL S ) |
| 5 |
|
rloc0g.5 |
|- ( ph -> R e. CRing ) |
| 6 |
|
rloc0g.6 |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
| 7 |
|
rloc0g.o |
|- O = [ <. .0. , .1. >. ] .~ |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 10 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 11 |
8 9 10 3 4 5 6
|
rloccring |
|- ( ph -> L e. CRing ) |
| 12 |
11
|
crnggrpd |
|- ( ph -> L e. Grp ) |
| 13 |
5
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 14 |
8 1
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> .0. e. ( Base ` R ) ) |
| 16 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 17 |
16 2
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 18 |
17
|
subm0cl |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> .1. e. S ) |
| 19 |
6 18
|
syl |
|- ( ph -> .1. e. S ) |
| 20 |
15 19
|
opelxpd |
|- ( ph -> <. .0. , .1. >. e. ( ( Base ` R ) X. S ) ) |
| 21 |
4
|
ovexi |
|- .~ e. _V |
| 22 |
21
|
ecelqsi |
|- ( <. .0. , .1. >. e. ( ( Base ` R ) X. S ) -> [ <. .0. , .1. >. ] .~ e. ( ( ( Base ` R ) X. S ) /. .~ ) ) |
| 23 |
20 22
|
syl |
|- ( ph -> [ <. .0. , .1. >. ] .~ e. ( ( ( Base ` R ) X. S ) /. .~ ) ) |
| 24 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 25 |
|
eqid |
|- ( ( Base ` R ) X. S ) = ( ( Base ` R ) X. S ) |
| 26 |
16 8
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 27 |
26
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ ( Base ` R ) ) |
| 28 |
6 27
|
syl |
|- ( ph -> S C_ ( Base ` R ) ) |
| 29 |
8 1 9 24 25 3 4 5 28
|
rlocbas |
|- ( ph -> ( ( ( Base ` R ) X. S ) /. .~ ) = ( Base ` L ) ) |
| 30 |
23 29
|
eleqtrd |
|- ( ph -> [ <. .0. , .1. >. ] .~ e. ( Base ` L ) ) |
| 31 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
| 32 |
8 9 10 3 4 5 6 15 15 19 19 31
|
rlocaddval |
|- ( ph -> ( [ <. .0. , .1. >. ] .~ ( +g ` L ) [ <. .0. , .1. >. ] .~ ) = [ <. ( ( .0. ( .r ` R ) .1. ) ( +g ` R ) ( .0. ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ] .~ ) |
| 33 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
| 34 |
8 9 2 33 15
|
ringridmd |
|- ( ph -> ( .0. ( .r ` R ) .1. ) = .0. ) |
| 35 |
34 34
|
oveq12d |
|- ( ph -> ( ( .0. ( .r ` R ) .1. ) ( +g ` R ) ( .0. ( .r ` R ) .1. ) ) = ( .0. ( +g ` R ) .0. ) ) |
| 36 |
8 10 1 13 15
|
grplidd |
|- ( ph -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 37 |
35 36
|
eqtrd |
|- ( ph -> ( ( .0. ( .r ` R ) .1. ) ( +g ` R ) ( .0. ( .r ` R ) .1. ) ) = .0. ) |
| 38 |
28 19
|
sseldd |
|- ( ph -> .1. e. ( Base ` R ) ) |
| 39 |
8 9 2 33 38
|
ringlidmd |
|- ( ph -> ( .1. ( .r ` R ) .1. ) = .1. ) |
| 40 |
37 39
|
opeq12d |
|- ( ph -> <. ( ( .0. ( .r ` R ) .1. ) ( +g ` R ) ( .0. ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. = <. .0. , .1. >. ) |
| 41 |
40
|
eceq1d |
|- ( ph -> [ <. ( ( .0. ( .r ` R ) .1. ) ( +g ` R ) ( .0. ( .r ` R ) .1. ) ) , ( .1. ( .r ` R ) .1. ) >. ] .~ = [ <. .0. , .1. >. ] .~ ) |
| 42 |
32 41
|
eqtrd |
|- ( ph -> ( [ <. .0. , .1. >. ] .~ ( +g ` L ) [ <. .0. , .1. >. ] .~ ) = [ <. .0. , .1. >. ] .~ ) |
| 43 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
| 44 |
|
eqid |
|- ( 0g ` L ) = ( 0g ` L ) |
| 45 |
43 31 44
|
isgrpid2 |
|- ( L e. Grp -> ( ( [ <. .0. , .1. >. ] .~ e. ( Base ` L ) /\ ( [ <. .0. , .1. >. ] .~ ( +g ` L ) [ <. .0. , .1. >. ] .~ ) = [ <. .0. , .1. >. ] .~ ) <-> ( 0g ` L ) = [ <. .0. , .1. >. ] .~ ) ) |
| 46 |
45
|
biimpa |
|- ( ( L e. Grp /\ ( [ <. .0. , .1. >. ] .~ e. ( Base ` L ) /\ ( [ <. .0. , .1. >. ] .~ ( +g ` L ) [ <. .0. , .1. >. ] .~ ) = [ <. .0. , .1. >. ] .~ ) ) -> ( 0g ` L ) = [ <. .0. , .1. >. ] .~ ) |
| 47 |
12 30 42 46
|
syl12anc |
|- ( ph -> ( 0g ` L ) = [ <. .0. , .1. >. ] .~ ) |
| 48 |
7 47
|
eqtr4id |
|- ( ph -> O = ( 0g ` L ) ) |