| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rloc0g.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 2 |
|
rloc0g.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
rloc0g.3 |
⊢ 𝐿 = ( 𝑅 RLocal 𝑆 ) |
| 4 |
|
rloc0g.4 |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
| 5 |
|
rloc0g.5 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
rloc0g.6 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 7 |
|
rloc0g.o |
⊢ 𝑂 = [ 〈 0 , 1 〉 ] ∼ |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 11 |
8 9 10 3 4 5 6
|
rloccring |
⊢ ( 𝜑 → 𝐿 ∈ CRing ) |
| 12 |
11
|
crnggrpd |
⊢ ( 𝜑 → 𝐿 ∈ Grp ) |
| 13 |
5
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 14 |
8 1
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 17 |
16 2
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 18 |
17
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 1 ∈ 𝑆 ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
| 20 |
15 19
|
opelxpd |
⊢ ( 𝜑 → 〈 0 , 1 〉 ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) ) |
| 21 |
4
|
ovexi |
⊢ ∼ ∈ V |
| 22 |
21
|
ecelqsi |
⊢ ( 〈 0 , 1 〉 ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) → [ 〈 0 , 1 〉 ] ∼ ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
| 23 |
20 22
|
syl |
⊢ ( 𝜑 → [ 〈 0 , 1 〉 ] ∼ ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
| 24 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 25 |
|
eqid |
⊢ ( ( Base ‘ 𝑅 ) × 𝑆 ) = ( ( Base ‘ 𝑅 ) × 𝑆 ) |
| 26 |
16 8
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 27 |
26
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 28 |
6 27
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 29 |
8 1 9 24 25 3 4 5 28
|
rlocbas |
⊢ ( 𝜑 → ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) = ( Base ‘ 𝐿 ) ) |
| 30 |
23 29
|
eleqtrd |
⊢ ( 𝜑 → [ 〈 0 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ) |
| 31 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
| 32 |
8 9 10 3 4 5 6 15 15 19 19 31
|
rlocaddval |
⊢ ( 𝜑 → ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ ) |
| 33 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 34 |
8 9 2 33 15
|
ringridmd |
⊢ ( 𝜑 → ( 0 ( .r ‘ 𝑅 ) 1 ) = 0 ) |
| 35 |
34 34
|
oveq12d |
⊢ ( 𝜑 → ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) = ( 0 ( +g ‘ 𝑅 ) 0 ) ) |
| 36 |
8 10 1 13 15
|
grplidd |
⊢ ( 𝜑 → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 37 |
35 36
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) = 0 ) |
| 38 |
28 19
|
sseldd |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 39 |
8 9 2 33 38
|
ringlidmd |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝑅 ) 1 ) = 1 ) |
| 40 |
37 39
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 = 〈 0 , 1 〉 ) |
| 41 |
40
|
eceq1d |
⊢ ( 𝜑 → [ 〈 ( ( 0 ( .r ‘ 𝑅 ) 1 ) ( +g ‘ 𝑅 ) ( 0 ( .r ‘ 𝑅 ) 1 ) ) , ( 1 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ = [ 〈 0 , 1 〉 ] ∼ ) |
| 42 |
32 41
|
eqtrd |
⊢ ( 𝜑 → ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 0 , 1 〉 ] ∼ ) |
| 43 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 44 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 45 |
43 31 44
|
isgrpid2 |
⊢ ( 𝐿 ∈ Grp → ( ( [ 〈 0 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ∧ ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 0 , 1 〉 ] ∼ ) ↔ ( 0g ‘ 𝐿 ) = [ 〈 0 , 1 〉 ] ∼ ) ) |
| 46 |
45
|
biimpa |
⊢ ( ( 𝐿 ∈ Grp ∧ ( [ 〈 0 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ∧ ( [ 〈 0 , 1 〉 ] ∼ ( +g ‘ 𝐿 ) [ 〈 0 , 1 〉 ] ∼ ) = [ 〈 0 , 1 〉 ] ∼ ) ) → ( 0g ‘ 𝐿 ) = [ 〈 0 , 1 〉 ] ∼ ) |
| 47 |
12 30 42 46
|
syl12anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐿 ) = [ 〈 0 , 1 〉 ] ∼ ) |
| 48 |
7 47
|
eqtr4id |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ 𝐿 ) ) |