| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rloc0g.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 2 |
|
rloc0g.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
rloc0g.3 |
⊢ 𝐿 = ( 𝑅 RLocal 𝑆 ) |
| 4 |
|
rloc0g.4 |
⊢ ∼ = ( 𝑅 ~RL 𝑆 ) |
| 5 |
|
rloc0g.5 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
rloc0g.6 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 7 |
|
rloc1r.i |
⊢ 𝐼 = [ 〈 1 , 1 〉 ] ∼ |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 11 |
8 9 10 3 4 5 6
|
rloccring |
⊢ ( 𝜑 → 𝐿 ∈ CRing ) |
| 12 |
11
|
crngringd |
⊢ ( 𝜑 → 𝐿 ∈ Ring ) |
| 13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 14 |
13 8
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 15 |
14
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 16 |
6 15
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 17 |
13 2
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 18 |
17
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) → 1 ∈ 𝑆 ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
| 20 |
16 19
|
sseldd |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
20 19
|
opelxpd |
⊢ ( 𝜑 → 〈 1 , 1 〉 ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) ) |
| 22 |
4
|
ovexi |
⊢ ∼ ∈ V |
| 23 |
22
|
ecelqsi |
⊢ ( 〈 1 , 1 〉 ∈ ( ( Base ‘ 𝑅 ) × 𝑆 ) → [ 〈 1 , 1 〉 ] ∼ ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
| 24 |
21 23
|
syl |
⊢ ( 𝜑 → [ 〈 1 , 1 〉 ] ∼ ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
| 25 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 26 |
|
eqid |
⊢ ( ( Base ‘ 𝑅 ) × 𝑆 ) = ( ( Base ‘ 𝑅 ) × 𝑆 ) |
| 27 |
8 1 9 25 26 3 4 5 16
|
rlocbas |
⊢ ( 𝜑 → ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) = ( Base ‘ 𝐿 ) ) |
| 28 |
24 27
|
eleqtrd |
⊢ ( 𝜑 → [ 〈 1 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ) |
| 29 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑅 ∈ CRing ) |
| 30 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑆 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 31 |
20
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 32 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
30 18
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 1 ∈ 𝑆 ) |
| 34 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ 𝑆 ) |
| 35 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
| 36 |
8 9 10 3 4 29 30 31 32 33 34 35
|
rlocmulval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 ( 1 ( .r ‘ 𝑅 ) 𝑎 ) , ( 1 ( .r ‘ 𝑅 ) 𝑏 ) 〉 ] ∼ ) |
| 37 |
29
|
crngringd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑅 ∈ Ring ) |
| 38 |
8 9 2 37 32
|
ringlidmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 1 ( .r ‘ 𝑅 ) 𝑎 ) = 𝑎 ) |
| 39 |
30 15
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 40 |
39 34
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) |
| 41 |
8 9 2 37 40
|
ringlidmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 1 ( .r ‘ 𝑅 ) 𝑏 ) = 𝑏 ) |
| 42 |
38 41
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( 1 ( .r ‘ 𝑅 ) 𝑎 ) , ( 1 ( .r ‘ 𝑅 ) 𝑏 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 43 |
42
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 ( 1 ( .r ‘ 𝑅 ) 𝑎 ) , ( 1 ( .r ‘ 𝑅 ) 𝑏 ) 〉 ] ∼ = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 44 |
36 43
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 45 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 𝑎 , 𝑏 〉 ] ∼ ) ) |
| 47 |
44 46 45
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ) |
| 48 |
27
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝐿 ) = ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
| 49 |
48
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐿 ) ↔ 𝑥 ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) ) |
| 50 |
49
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → 𝑥 ∈ ( ( ( Base ‘ 𝑅 ) × 𝑆 ) / ∼ ) ) |
| 51 |
50
|
elrlocbasi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → ∃ 𝑎 ∈ ( Base ‘ 𝑅 ) ∃ 𝑏 ∈ 𝑆 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 52 |
47 51
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ) |
| 53 |
8 9 10 3 4 29 30 32 31 34 33 35
|
rlocmulval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 1 ) , ( 𝑏 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ ) |
| 54 |
8 9 2 37 32
|
ringridmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑎 ( .r ‘ 𝑅 ) 1 ) = 𝑎 ) |
| 55 |
8 9 2 37 40
|
ringridmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑏 ( .r ‘ 𝑅 ) 1 ) = 𝑏 ) |
| 56 |
54 55
|
opeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 ( 𝑎 ( .r ‘ 𝑅 ) 1 ) , ( 𝑏 ( .r ‘ 𝑅 ) 1 ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 57 |
56
|
eceq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 ( 𝑎 ( .r ‘ 𝑅 ) 1 ) , ( 𝑏 ( .r ‘ 𝑅 ) 1 ) 〉 ] ∼ = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 58 |
53 57
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 59 |
45
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = ( [ 〈 𝑎 , 𝑏 〉 ] ∼ ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) ) |
| 60 |
58 59 45
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑏 ∈ 𝑆 ) ∧ 𝑥 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = 𝑥 ) |
| 61 |
60 51
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = 𝑥 ) |
| 62 |
52 61
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐿 ) ) → ( ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = 𝑥 ) ) |
| 63 |
62
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = 𝑥 ) ) |
| 64 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 65 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
| 66 |
64 35 65
|
isringid |
⊢ ( 𝐿 ∈ Ring → ( ( [ 〈 1 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = 𝑥 ) ) ↔ ( 1r ‘ 𝐿 ) = [ 〈 1 , 1 〉 ] ∼ ) ) |
| 67 |
66
|
biimpa |
⊢ ( ( 𝐿 ∈ Ring ∧ ( [ 〈 1 , 1 〉 ] ∼ ∈ ( Base ‘ 𝐿 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐿 ) ( ( [ 〈 1 , 1 〉 ] ∼ ( .r ‘ 𝐿 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐿 ) [ 〈 1 , 1 〉 ] ∼ ) = 𝑥 ) ) ) → ( 1r ‘ 𝐿 ) = [ 〈 1 , 1 〉 ] ∼ ) |
| 68 |
12 28 63 67
|
syl12anc |
⊢ ( 𝜑 → ( 1r ‘ 𝐿 ) = [ 〈 1 , 1 〉 ] ∼ ) |
| 69 |
7 68
|
eqtr4id |
⊢ ( 𝜑 → 𝐼 = ( 1r ‘ 𝐿 ) ) |