| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrgsubm.1 |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
| 2 |
|
rrgsubm.2 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 3 |
|
rrgsubm.3 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 5 |
3 4
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
1 6
|
rrgss |
⊢ 𝐸 ⊆ ( Base ‘ 𝑅 ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐸 ⊆ ( Base ‘ 𝑅 ) ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 10 |
9 1 3
|
1rrg |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐸 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 12 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑅 ∈ Ring ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑥 ∈ 𝐸 ) |
| 14 |
7 13
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑦 ∈ 𝐸 ) |
| 16 |
7 15
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
6 11 12 14 16
|
ringcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
15
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ 𝐸 ) |
| 19 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
13
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝐸 ) |
| 21 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 22 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
6 11 21 22 19
|
ringcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 24 |
14
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 25 |
6 11 21 24 22 19
|
ringassd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 26 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 27 |
25 26
|
eqtr3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( 0g ‘ 𝑅 ) ) |
| 28 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 29 |
1 6 11 28
|
rrgeq0i |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( 0g ‘ 𝑅 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( ( 𝑥 ∈ 𝐸 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 31 |
20 23 27 30
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) |
| 32 |
1 6 11 28
|
rrgeq0i |
⊢ ( ( 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
| 33 |
32
|
imp |
⊢ ( ( ( 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑧 = ( 0g ‘ 𝑅 ) ) |
| 34 |
18 19 31 33
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) ) → 𝑧 = ( 0g ‘ 𝑅 ) ) |
| 35 |
34
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
| 36 |
35
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) |
| 37 |
1 6 11 28
|
isrrg |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 0g ‘ 𝑅 ) → 𝑧 = ( 0g ‘ 𝑅 ) ) ) ) |
| 38 |
17 36 37
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐸 ) ∧ 𝑦 ∈ 𝐸 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) |
| 39 |
38
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐸 ∧ 𝑦 ∈ 𝐸 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) |
| 40 |
39
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) |
| 41 |
2 6
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 42 |
2 9
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 43 |
2 11
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 44 |
41 42 43
|
issubm |
⊢ ( 𝑀 ∈ Mnd → ( 𝐸 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐸 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐸 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝐸 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐸 ∧ ∀ 𝑥 ∈ 𝐸 ∀ 𝑦 ∈ 𝐸 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐸 ) ) → 𝐸 ∈ ( SubMnd ‘ 𝑀 ) ) |
| 46 |
5 8 10 40 45
|
syl13anc |
⊢ ( 𝜑 → 𝐸 ∈ ( SubMnd ‘ 𝑀 ) ) |