Description: Define the field of fractions of a given integral domain. (Contributed by Thierry Arnoux, 26-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-frac | ⊢ Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cfrac | ⊢ Frac | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑟 | 
| 4 | crloc | ⊢ RLocal | |
| 5 | crlreg | ⊢ RLReg | |
| 6 | 3 5 | cfv | ⊢ ( RLReg ‘ 𝑟 ) | 
| 7 | 3 6 4 | co | ⊢ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) | 
| 8 | 1 2 7 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) ) | 
| 9 | 0 8 | wceq | ⊢ Frac = ( 𝑟 ∈ V ↦ ( 𝑟 RLocal ( RLReg ‘ 𝑟 ) ) ) |