| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cR |
|- R |
| 1 |
|
cA |
|- A |
| 2 |
|
cF |
|- F |
| 3 |
1 0 2
|
cfrecs |
|- frecs ( R , A , F ) |
| 4 |
|
vf |
|- f |
| 5 |
|
vx |
|- x |
| 6 |
4
|
cv |
|- f |
| 7 |
5
|
cv |
|- x |
| 8 |
6 7
|
wfn |
|- f Fn x |
| 9 |
7 1
|
wss |
|- x C_ A |
| 10 |
|
vy |
|- y |
| 11 |
10
|
cv |
|- y |
| 12 |
1 0 11
|
cpred |
|- Pred ( R , A , y ) |
| 13 |
12 7
|
wss |
|- Pred ( R , A , y ) C_ x |
| 14 |
13 10 7
|
wral |
|- A. y e. x Pred ( R , A , y ) C_ x |
| 15 |
9 14
|
wa |
|- ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) |
| 16 |
11 6
|
cfv |
|- ( f ` y ) |
| 17 |
6 12
|
cres |
|- ( f |` Pred ( R , A , y ) ) |
| 18 |
11 17 2
|
co |
|- ( y F ( f |` Pred ( R , A , y ) ) ) |
| 19 |
16 18
|
wceq |
|- ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) |
| 20 |
19 10 7
|
wral |
|- A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) |
| 21 |
8 15 20
|
w3a |
|- ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) |
| 22 |
21 5
|
wex |
|- E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) |
| 23 |
22 4
|
cab |
|- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |
| 24 |
23
|
cuni |
|- U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |
| 25 |
3 24
|
wceq |
|- frecs ( R , A , F ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |