| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cR |
⊢ 𝑅 |
| 1 |
|
cA |
⊢ 𝐴 |
| 2 |
|
cF |
⊢ 𝐹 |
| 3 |
1 0 2
|
cfrecs |
⊢ frecs ( 𝑅 , 𝐴 , 𝐹 ) |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
vx |
⊢ 𝑥 |
| 6 |
4
|
cv |
⊢ 𝑓 |
| 7 |
5
|
cv |
⊢ 𝑥 |
| 8 |
6 7
|
wfn |
⊢ 𝑓 Fn 𝑥 |
| 9 |
7 1
|
wss |
⊢ 𝑥 ⊆ 𝐴 |
| 10 |
|
vy |
⊢ 𝑦 |
| 11 |
10
|
cv |
⊢ 𝑦 |
| 12 |
1 0 11
|
cpred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑦 ) |
| 13 |
12 7
|
wss |
⊢ Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 |
| 14 |
13 10 7
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 |
| 15 |
9 14
|
wa |
⊢ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) |
| 16 |
11 6
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 17 |
6 12
|
cres |
⊢ ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) |
| 18 |
11 17 2
|
co |
⊢ ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
| 19 |
16 18
|
wceq |
⊢ ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
| 20 |
19 10 7
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) |
| 21 |
8 15 20
|
w3a |
⊢ ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 22 |
21 5
|
wex |
⊢ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 23 |
22 4
|
cab |
⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 24 |
23
|
cuni |
⊢ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 25 |
3 24
|
wceq |
⊢ frecs ( 𝑅 , 𝐴 , 𝐹 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |