Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → 𝐴 = 𝐵 ) |
2 |
1
|
sseq2d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵 ) ) |
3 |
|
equid |
⊢ 𝑦 = 𝑦 |
4 |
|
predeq123 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑦 = 𝑦 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑆 , 𝐵 , 𝑦 ) ) |
5 |
3 4
|
mp3an3 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑆 , 𝐵 , 𝑦 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑆 , 𝐵 , 𝑦 ) ) |
7 |
6
|
sseq1d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ) |
8 |
7
|
ralbidv |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ) |
9 |
2 8
|
anbi12d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ↔ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ) ) |
10 |
|
simp3 |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → 𝐹 = 𝐺 ) |
11 |
10
|
oveqd |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
12 |
6
|
reseq2d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) |
14 |
11 13
|
eqtrd |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) |
16 |
15
|
ralbidv |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) |
17 |
9 16
|
3anbi23d |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) ) |
18 |
17
|
exbidv |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ( ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) ) ) |
19 |
18
|
abbidv |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) } ) |
20 |
19
|
unieqd |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) } ) |
21 |
|
df-frecs |
⊢ frecs ( 𝑅 , 𝐴 , 𝐹 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
22 |
|
df-frecs |
⊢ frecs ( 𝑆 , 𝐵 , 𝐺 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑆 , 𝐵 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑆 , 𝐵 , 𝑦 ) ) ) ) } |
23 |
20 21 22
|
3eqtr4g |
⊢ ( ( 𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺 ) → frecs ( 𝑅 , 𝐴 , 𝐹 ) = frecs ( 𝑆 , 𝐵 , 𝐺 ) ) |