Metamath Proof Explorer


Definition df-fusgr

Description: Define the class of all finite undirected simple graphs without loops (called "finite simple graphs" in the following). A finite simple graph is an undirected simple graph of finite order, i.e. with a finite set of vertices. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Assertion df-fusgr
|- FinUSGraph = { g e. USGraph | ( Vtx ` g ) e. Fin }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfusgr
 |-  FinUSGraph
1 vg
 |-  g
2 cusgr
 |-  USGraph
3 cvtx
 |-  Vtx
4 1 cv
 |-  g
5 4 3 cfv
 |-  ( Vtx ` g )
6 cfn
 |-  Fin
7 5 6 wcel
 |-  ( Vtx ` g ) e. Fin
8 7 1 2 crab
 |-  { g e. USGraph | ( Vtx ` g ) e. Fin }
9 0 8 wceq
 |-  FinUSGraph = { g e. USGraph | ( Vtx ` g ) e. Fin }