Description: Define the forward difference operator. This is a discrete analogue of the derivative operator. Definition 2.42 of GramKnuthPat, p. 47. (Contributed by Scott Fenton, 18-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fwddif | |- _/_\ = ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfwddif | |- _/_\ |
|
| 1 | vf | |- f |
|
| 2 | cc | |- CC |
|
| 3 | cpm | |- ^pm |
|
| 4 | 2 2 3 | co | |- ( CC ^pm CC ) |
| 5 | vx | |- x |
|
| 6 | vy | |- y |
|
| 7 | 1 | cv | |- f |
| 8 | 7 | cdm | |- dom f |
| 9 | 6 | cv | |- y |
| 10 | caddc | |- + |
|
| 11 | c1 | |- 1 |
|
| 12 | 9 11 10 | co | |- ( y + 1 ) |
| 13 | 12 8 | wcel | |- ( y + 1 ) e. dom f |
| 14 | 13 6 8 | crab | |- { y e. dom f | ( y + 1 ) e. dom f } |
| 15 | 5 | cv | |- x |
| 16 | 15 11 10 | co | |- ( x + 1 ) |
| 17 | 16 7 | cfv | |- ( f ` ( x + 1 ) ) |
| 18 | cmin | |- - |
|
| 19 | 15 7 | cfv | |- ( f ` x ) |
| 20 | 17 19 18 | co | |- ( ( f ` ( x + 1 ) ) - ( f ` x ) ) |
| 21 | 5 14 20 | cmpt | |- ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) |
| 22 | 1 4 21 | cmpt | |- ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) ) |
| 23 | 0 22 | wceq | |- _/_\ = ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) ) |