Metamath Proof Explorer


Definition df-fwddif

Description: Define the forward difference operator. This is a discrete analogue of the derivative operator. Definition 2.42 of GramKnuthPat, p. 47. (Contributed by Scott Fenton, 18-May-2020)

Ref Expression
Assertion df-fwddif
|- _/_\ = ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfwddif
 |-  _/_\
1 vf
 |-  f
2 cc
 |-  CC
3 cpm
 |-  ^pm
4 2 2 3 co
 |-  ( CC ^pm CC )
5 vx
 |-  x
6 vy
 |-  y
7 1 cv
 |-  f
8 7 cdm
 |-  dom f
9 6 cv
 |-  y
10 caddc
 |-  +
11 c1
 |-  1
12 9 11 10 co
 |-  ( y + 1 )
13 12 8 wcel
 |-  ( y + 1 ) e. dom f
14 13 6 8 crab
 |-  { y e. dom f | ( y + 1 ) e. dom f }
15 5 cv
 |-  x
16 15 11 10 co
 |-  ( x + 1 )
17 16 7 cfv
 |-  ( f ` ( x + 1 ) )
18 cmin
 |-  -
19 15 7 cfv
 |-  ( f ` x )
20 17 19 18 co
 |-  ( ( f ` ( x + 1 ) ) - ( f ` x ) )
21 5 14 20 cmpt
 |-  ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) )
22 1 4 21 cmpt
 |-  ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) )
23 0 22 wceq
 |-  _/_\ = ( f e. ( CC ^pm CC ) |-> ( x e. { y e. dom f | ( y + 1 ) e. dom f } |-> ( ( f ` ( x + 1 ) ) - ( f ` x ) ) ) )