Metamath Proof Explorer


Definition df-fwddif

Description: Define the forward difference operator. This is a discrete analogue of the derivative operator. Definition 2.42 of GramKnuthPat, p. 47. (Contributed by Scott Fenton, 18-May-2020)

Ref Expression
Assertion df-fwddif △ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfwddif
1 vf 𝑓
2 cc
3 cpm pm
4 2 2 3 co ( ℂ ↑pm ℂ )
5 vx 𝑥
6 vy 𝑦
7 1 cv 𝑓
8 7 cdm dom 𝑓
9 6 cv 𝑦
10 caddc +
11 c1 1
12 9 11 10 co ( 𝑦 + 1 )
13 12 8 wcel ( 𝑦 + 1 ) ∈ dom 𝑓
14 13 6 8 crab { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 }
15 5 cv 𝑥
16 15 11 10 co ( 𝑥 + 1 )
17 16 7 cfv ( 𝑓 ‘ ( 𝑥 + 1 ) )
18 cmin
19 15 7 cfv ( 𝑓𝑥 )
20 17 19 18 co ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓𝑥 ) )
21 5 14 20 cmpt ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓𝑥 ) ) )
22 1 4 21 cmpt ( 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓𝑥 ) ) ) )
23 0 22 wceq △ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓𝑥 ) ) ) )