Step |
Hyp |
Ref |
Expression |
0 |
|
cfwddif |
⊢ △ |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cc |
⊢ ℂ |
3 |
|
cpm |
⊢ ↑pm |
4 |
2 2 3
|
co |
⊢ ( ℂ ↑pm ℂ ) |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
vy |
⊢ 𝑦 |
7 |
1
|
cv |
⊢ 𝑓 |
8 |
7
|
cdm |
⊢ dom 𝑓 |
9 |
6
|
cv |
⊢ 𝑦 |
10 |
|
caddc |
⊢ + |
11 |
|
c1 |
⊢ 1 |
12 |
9 11 10
|
co |
⊢ ( 𝑦 + 1 ) |
13 |
12 8
|
wcel |
⊢ ( 𝑦 + 1 ) ∈ dom 𝑓 |
14 |
13 6 8
|
crab |
⊢ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } |
15 |
5
|
cv |
⊢ 𝑥 |
16 |
15 11 10
|
co |
⊢ ( 𝑥 + 1 ) |
17 |
16 7
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 + 1 ) ) |
18 |
|
cmin |
⊢ − |
19 |
15 7
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
20 |
17 19 18
|
co |
⊢ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓 ‘ 𝑥 ) ) |
21 |
5 14 20
|
cmpt |
⊢ ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓 ‘ 𝑥 ) ) ) |
22 |
1 4 21
|
cmpt |
⊢ ( 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓 ‘ 𝑥 ) ) ) ) |
23 |
0 22
|
wceq |
⊢ △ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) ↦ ( 𝑥 ∈ { 𝑦 ∈ dom 𝑓 ∣ ( 𝑦 + 1 ) ∈ dom 𝑓 } ↦ ( ( 𝑓 ‘ ( 𝑥 + 1 ) ) − ( 𝑓 ‘ 𝑥 ) ) ) ) |