Metamath Proof Explorer


Definition df-fxp

Description: Define the set of fixed points left unchanged by a group action. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Assertion df-fxp
|- FixPts = ( b e. _V , a e. _V |-> { x e. b | A. p e. dom dom a ( p a x ) = x } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfxp
 |-  FixPts
1 vb
 |-  b
2 cvv
 |-  _V
3 va
 |-  a
4 vx
 |-  x
5 1 cv
 |-  b
6 vp
 |-  p
7 3 cv
 |-  a
8 7 cdm
 |-  dom a
9 8 cdm
 |-  dom dom a
10 6 cv
 |-  p
11 4 cv
 |-  x
12 10 11 7 co
 |-  ( p a x )
13 12 11 wceq
 |-  ( p a x ) = x
14 13 6 9 wral
 |-  A. p e. dom dom a ( p a x ) = x
15 14 4 5 crab
 |-  { x e. b | A. p e. dom dom a ( p a x ) = x }
16 1 3 2 2 15 cmpo
 |-  ( b e. _V , a e. _V |-> { x e. b | A. p e. dom dom a ( p a x ) = x } )
17 0 16 wceq
 |-  FixPts = ( b e. _V , a e. _V |-> { x e. b | A. p e. dom dom a ( p a x ) = x } )