Metamath Proof Explorer


Definition df-fxp

Description: Define the set of fixed points left unchanged by a group action. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Assertion df-fxp FixPts = ( 𝑏 ∈ V , 𝑎 ∈ V ↦ { 𝑥𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfxp FixPts
1 vb 𝑏
2 cvv V
3 va 𝑎
4 vx 𝑥
5 1 cv 𝑏
6 vp 𝑝
7 3 cv 𝑎
8 7 cdm dom 𝑎
9 8 cdm dom dom 𝑎
10 6 cv 𝑝
11 4 cv 𝑥
12 10 11 7 co ( 𝑝 𝑎 𝑥 )
13 12 11 wceq ( 𝑝 𝑎 𝑥 ) = 𝑥
14 13 6 9 wral 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥
15 14 4 5 crab { 𝑥𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 }
16 1 3 2 2 15 cmpo ( 𝑏 ∈ V , 𝑎 ∈ V ↦ { 𝑥𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 } )
17 0 16 wceq FixPts = ( 𝑏 ∈ V , 𝑎 ∈ V ↦ { 𝑥𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 } )