| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpval.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 2 |
|
fxpval.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) |
| 3 |
|
df-fxp |
⊢ FixPts = ( 𝑏 ∈ V , 𝑎 ∈ V ↦ { 𝑥 ∈ 𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 } ) |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → FixPts = ( 𝑏 ∈ V , 𝑎 ∈ V ↦ { 𝑥 ∈ 𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 } ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) → 𝑏 = 𝐵 ) |
| 6 |
|
dmeq |
⊢ ( 𝑎 = 𝐴 → dom 𝑎 = dom 𝐴 ) |
| 7 |
6
|
dmeqd |
⊢ ( 𝑎 = 𝐴 → dom dom 𝑎 = dom dom 𝐴 ) |
| 8 |
|
oveq |
⊢ ( 𝑎 = 𝐴 → ( 𝑝 𝑎 𝑥 ) = ( 𝑝 𝐴 𝑥 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑝 𝑎 𝑥 ) = 𝑥 ↔ ( 𝑝 𝐴 𝑥 ) = 𝑥 ) ) |
| 10 |
7 9
|
raleqbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 ↔ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) → ( ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 ↔ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 ) ) |
| 12 |
5 11
|
rabeqbidv |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) → { 𝑥 ∈ 𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐴 ) ) → { 𝑥 ∈ 𝑏 ∣ ∀ 𝑝 ∈ dom dom 𝑎 ( 𝑝 𝑎 𝑥 ) = 𝑥 } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 14 |
1
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 15 |
2
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 16 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } |
| 17 |
16 1
|
rabexd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ∈ V ) |
| 18 |
4 13 14 15 17
|
ovmpod |
⊢ ( 𝜑 → ( 𝐵 FixPts 𝐴 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |