Description: The set of fixed points is a subset of the set acted upon. (Contributed by Thierry Arnoux, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fxpval.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| fxpval.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | ||
| Assertion | fxpss | ⊢ ( 𝜑 → ( 𝐵 FixPts 𝐴 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxpval.1 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 2 | fxpval.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑊 ) | |
| 3 | 1 2 | fxpval | ⊢ ( 𝜑 → ( 𝐵 FixPts 𝐴 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 4 | ssrab2 | ⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ⊆ 𝐵 | |
| 5 | 3 4 | eqsstrdi | ⊢ ( 𝜑 → ( 𝐵 FixPts 𝐴 ) ⊆ 𝐵 ) |