Metamath Proof Explorer


Theorem fxpss

Description: The set of fixed points is a subset of the set acted upon. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpval.1 ( 𝜑𝐵𝑉 )
fxpval.2 ( 𝜑𝐴𝑊 )
Assertion fxpss ( 𝜑 → ( 𝐵 FixPts 𝐴 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 fxpval.1 ( 𝜑𝐵𝑉 )
2 fxpval.2 ( 𝜑𝐴𝑊 )
3 1 2 fxpval ( 𝜑 → ( 𝐵 FixPts 𝐴 ) = { 𝑥𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
4 ssrab2 { 𝑥𝐵 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ⊆ 𝐵
5 3 4 eqsstrdi ( 𝜑 → ( 𝐵 FixPts 𝐴 ) ⊆ 𝐵 )