Description: The set of fixed points is a subset of the set acted upon. (Contributed by Thierry Arnoux, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fxpval.1 | |- ( ph -> B e. V ) |
|
| fxpval.2 | |- ( ph -> A e. W ) |
||
| Assertion | fxpss | |- ( ph -> ( B FixPts A ) C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxpval.1 | |- ( ph -> B e. V ) |
|
| 2 | fxpval.2 | |- ( ph -> A e. W ) |
|
| 3 | 1 2 | fxpval | |- ( ph -> ( B FixPts A ) = { x e. B | A. p e. dom dom A ( p A x ) = x } ) |
| 4 | ssrab2 | |- { x e. B | A. p e. dom dom A ( p A x ) = x } C_ B |
|
| 5 | 3 4 | eqsstrdi | |- ( ph -> ( B FixPts A ) C_ B ) |