Metamath Proof Explorer


Theorem fxpss

Description: The set of fixed points is a subset of the set acted upon. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpval.1
|- ( ph -> B e. V )
fxpval.2
|- ( ph -> A e. W )
Assertion fxpss
|- ( ph -> ( B FixPts A ) C_ B )

Proof

Step Hyp Ref Expression
1 fxpval.1
 |-  ( ph -> B e. V )
2 fxpval.2
 |-  ( ph -> A e. W )
3 1 2 fxpval
 |-  ( ph -> ( B FixPts A ) = { x e. B | A. p e. dom dom A ( p A x ) = x } )
4 ssrab2
 |-  { x e. B | A. p e. dom dom A ( p A x ) = x } C_ B
5 3 4 eqsstrdi
 |-  ( ph -> ( B FixPts A ) C_ B )