| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpgaval.s |
|- U = ( Base ` G ) |
| 2 |
|
fxpgaval.a |
|- ( ph -> A e. ( G GrpAct C ) ) |
| 3 |
|
simpr |
|- ( ( ph /\ C = (/) ) -> C = (/) ) |
| 4 |
3
|
rabeqdv |
|- ( ( ph /\ C = (/) ) -> { x e. C | A. p e. dom dom A ( p A x ) = x } = { x e. (/) | A. p e. dom dom A ( p A x ) = x } ) |
| 5 |
|
rab0 |
|- { x e. (/) | A. p e. dom dom A ( p A x ) = x } = (/) |
| 6 |
4 5
|
eqtrdi |
|- ( ( ph /\ C = (/) ) -> { x e. C | A. p e. dom dom A ( p A x ) = x } = (/) ) |
| 7 |
|
gaset |
|- ( A e. ( G GrpAct C ) -> C e. _V ) |
| 8 |
2 7
|
syl |
|- ( ph -> C e. _V ) |
| 9 |
8 2
|
fxpval |
|- ( ph -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ C = (/) ) -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) |
| 11 |
3
|
rabeqdv |
|- ( ( ph /\ C = (/) ) -> { x e. C | A. p e. U ( p A x ) = x } = { x e. (/) | A. p e. U ( p A x ) = x } ) |
| 12 |
|
rab0 |
|- { x e. (/) | A. p e. U ( p A x ) = x } = (/) |
| 13 |
11 12
|
eqtrdi |
|- ( ( ph /\ C = (/) ) -> { x e. C | A. p e. U ( p A x ) = x } = (/) ) |
| 14 |
6 10 13
|
3eqtr4d |
|- ( ( ph /\ C = (/) ) -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) |
| 15 |
9
|
adantr |
|- ( ( ph /\ C =/= (/) ) -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) |
| 16 |
1
|
gaf |
|- ( A e. ( G GrpAct C ) -> A : ( U X. C ) --> C ) |
| 17 |
2 16
|
syl |
|- ( ph -> A : ( U X. C ) --> C ) |
| 18 |
17
|
fdmd |
|- ( ph -> dom A = ( U X. C ) ) |
| 19 |
18
|
dmeqd |
|- ( ph -> dom dom A = dom ( U X. C ) ) |
| 20 |
|
dmxp |
|- ( C =/= (/) -> dom ( U X. C ) = U ) |
| 21 |
19 20
|
sylan9eq |
|- ( ( ph /\ C =/= (/) ) -> dom dom A = U ) |
| 22 |
21
|
raleqdv |
|- ( ( ph /\ C =/= (/) ) -> ( A. p e. dom dom A ( p A x ) = x <-> A. p e. U ( p A x ) = x ) ) |
| 23 |
22
|
rabbidv |
|- ( ( ph /\ C =/= (/) ) -> { x e. C | A. p e. dom dom A ( p A x ) = x } = { x e. C | A. p e. U ( p A x ) = x } ) |
| 24 |
15 23
|
eqtrd |
|- ( ( ph /\ C =/= (/) ) -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) |
| 25 |
14 24
|
pm2.61dane |
|- ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) |