Metamath Proof Explorer


Theorem fxpgaval

Description: Value of the set of fixed points for a group action A (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpgaval.s U = Base G
fxpgaval.a φ A G GrpAct C
Assertion fxpgaval Could not format assertion : No typesetting found for |- ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) with typecode |-

Proof

Step Hyp Ref Expression
1 fxpgaval.s U = Base G
2 fxpgaval.a φ A G GrpAct C
3 simpr φ C = C =
4 3 rabeqdv φ C = x C | p dom dom A p A x = x = x | p dom dom A p A x = x
5 rab0 x | p dom dom A p A x = x =
6 4 5 eqtrdi φ C = x C | p dom dom A p A x = x =
7 gaset A G GrpAct C C V
8 2 7 syl φ C V
9 8 2 fxpval Could not format ( ph -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) : No typesetting found for |- ( ph -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) with typecode |-
10 9 adantr Could not format ( ( ph /\ C = (/) ) -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) : No typesetting found for |- ( ( ph /\ C = (/) ) -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) with typecode |-
11 3 rabeqdv φ C = x C | p U p A x = x = x | p U p A x = x
12 rab0 x | p U p A x = x =
13 11 12 eqtrdi φ C = x C | p U p A x = x =
14 6 10 13 3eqtr4d Could not format ( ( ph /\ C = (/) ) -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) : No typesetting found for |- ( ( ph /\ C = (/) ) -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) with typecode |-
15 9 adantr Could not format ( ( ph /\ C =/= (/) ) -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) : No typesetting found for |- ( ( ph /\ C =/= (/) ) -> ( C FixPts A ) = { x e. C | A. p e. dom dom A ( p A x ) = x } ) with typecode |-
16 1 gaf A G GrpAct C A : U × C C
17 2 16 syl φ A : U × C C
18 17 fdmd φ dom A = U × C
19 18 dmeqd φ dom dom A = dom U × C
20 dmxp C dom U × C = U
21 19 20 sylan9eq φ C dom dom A = U
22 21 raleqdv φ C p dom dom A p A x = x p U p A x = x
23 22 rabbidv φ C x C | p dom dom A p A x = x = x C | p U p A x = x
24 15 23 eqtrd Could not format ( ( ph /\ C =/= (/) ) -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) : No typesetting found for |- ( ( ph /\ C =/= (/) ) -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) with typecode |-
25 14 24 pm2.61dane Could not format ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) : No typesetting found for |- ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) with typecode |-