Metamath Proof Explorer


Theorem fxpval

Description: Value of the set of fixed points. (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpval.1 φ B V
fxpval.2 φ A W
Assertion fxpval Could not format assertion : No typesetting found for |- ( ph -> ( B FixPts A ) = { x e. B | A. p e. dom dom A ( p A x ) = x } ) with typecode |-

Proof

Step Hyp Ref Expression
1 fxpval.1 φ B V
2 fxpval.2 φ A W
3 df-fxp Could not format FixPts = ( b e. _V , a e. _V |-> { x e. b | A. p e. dom dom a ( p a x ) = x } ) : No typesetting found for |- FixPts = ( b e. _V , a e. _V |-> { x e. b | A. p e. dom dom a ( p a x ) = x } ) with typecode |-
4 3 a1i Could not format ( ph -> FixPts = ( b e. _V , a e. _V |-> { x e. b | A. p e. dom dom a ( p a x ) = x } ) ) : No typesetting found for |- ( ph -> FixPts = ( b e. _V , a e. _V |-> { x e. b | A. p e. dom dom a ( p a x ) = x } ) ) with typecode |-
5 simpl b = B a = A b = B
6 dmeq a = A dom a = dom A
7 6 dmeqd a = A dom dom a = dom dom A
8 oveq a = A p a x = p A x
9 8 eqeq1d a = A p a x = x p A x = x
10 7 9 raleqbidv a = A p dom dom a p a x = x p dom dom A p A x = x
11 10 adantl b = B a = A p dom dom a p a x = x p dom dom A p A x = x
12 5 11 rabeqbidv b = B a = A x b | p dom dom a p a x = x = x B | p dom dom A p A x = x
13 12 adantl φ b = B a = A x b | p dom dom a p a x = x = x B | p dom dom A p A x = x
14 1 elexd φ B V
15 2 elexd φ A V
16 eqid x B | p dom dom A p A x = x = x B | p dom dom A p A x = x
17 16 1 rabexd φ x B | p dom dom A p A x = x V
18 4 13 14 15 17 ovmpod Could not format ( ph -> ( B FixPts A ) = { x e. B | A. p e. dom dom A ( p A x ) = x } ) : No typesetting found for |- ( ph -> ( B FixPts A ) = { x e. B | A. p e. dom dom A ( p A x ) = x } ) with typecode |-