Metamath Proof Explorer


Theorem fxpgaval

Description: Value of the set of fixed points for a group action A (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpgaval.s 𝑈 = ( Base ‘ 𝐺 )
fxpgaval.a ( 𝜑𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) )
Assertion fxpgaval ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )

Proof

Step Hyp Ref Expression
1 fxpgaval.s 𝑈 = ( Base ‘ 𝐺 )
2 fxpgaval.a ( 𝜑𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) )
3 simpr ( ( 𝜑𝐶 = ∅ ) → 𝐶 = ∅ )
4 3 rabeqdv ( ( 𝜑𝐶 = ∅ ) → { 𝑥𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = { 𝑥 ∈ ∅ ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
5 rab0 { 𝑥 ∈ ∅ ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅
6 4 5 eqtrdi ( ( 𝜑𝐶 = ∅ ) → { 𝑥𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅ )
7 gaset ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐶 ∈ V )
8 2 7 syl ( 𝜑𝐶 ∈ V )
9 8 2 fxpval ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
10 9 adantr ( ( 𝜑𝐶 = ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
11 3 rabeqdv ( ( 𝜑𝐶 = ∅ ) → { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = { 𝑥 ∈ ∅ ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
12 rab0 { 𝑥 ∈ ∅ ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅
13 11 12 eqtrdi ( ( 𝜑𝐶 = ∅ ) → { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅ )
14 6 10 13 3eqtr4d ( ( 𝜑𝐶 = ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
15 9 adantr ( ( 𝜑𝐶 ≠ ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
16 1 gaf ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐴 : ( 𝑈 × 𝐶 ) ⟶ 𝐶 )
17 2 16 syl ( 𝜑𝐴 : ( 𝑈 × 𝐶 ) ⟶ 𝐶 )
18 17 fdmd ( 𝜑 → dom 𝐴 = ( 𝑈 × 𝐶 ) )
19 18 dmeqd ( 𝜑 → dom dom 𝐴 = dom ( 𝑈 × 𝐶 ) )
20 dmxp ( 𝐶 ≠ ∅ → dom ( 𝑈 × 𝐶 ) = 𝑈 )
21 19 20 sylan9eq ( ( 𝜑𝐶 ≠ ∅ ) → dom dom 𝐴 = 𝑈 )
22 21 raleqdv ( ( 𝜑𝐶 ≠ ∅ ) → ( ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 ) )
23 22 rabbidv ( ( 𝜑𝐶 ≠ ∅ ) → { 𝑥𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
24 15 23 eqtrd ( ( 𝜑𝐶 ≠ ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
25 14 24 pm2.61dane ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )