| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpgaval.s |
⊢ 𝑈 = ( Base ‘ 𝐺 ) |
| 2 |
|
fxpgaval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → 𝐶 = ∅ ) |
| 4 |
3
|
rabeqdv |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = { 𝑥 ∈ ∅ ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 5 |
|
rab0 |
⊢ { 𝑥 ∈ ∅ ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅ |
| 6 |
4 5
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅ ) |
| 7 |
|
gaset |
⊢ ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐶 ∈ V ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 9 |
8 2
|
fxpval |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 11 |
3
|
rabeqdv |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = { 𝑥 ∈ ∅ ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 12 |
|
rab0 |
⊢ { 𝑥 ∈ ∅ ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅ |
| 13 |
11 12
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = ∅ ) |
| 14 |
6 10 13
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐶 = ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 16 |
1
|
gaf |
⊢ ( 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) → 𝐴 : ( 𝑈 × 𝐶 ) ⟶ 𝐶 ) |
| 17 |
2 16
|
syl |
⊢ ( 𝜑 → 𝐴 : ( 𝑈 × 𝐶 ) ⟶ 𝐶 ) |
| 18 |
17
|
fdmd |
⊢ ( 𝜑 → dom 𝐴 = ( 𝑈 × 𝐶 ) ) |
| 19 |
18
|
dmeqd |
⊢ ( 𝜑 → dom dom 𝐴 = dom ( 𝑈 × 𝐶 ) ) |
| 20 |
|
dmxp |
⊢ ( 𝐶 ≠ ∅ → dom ( 𝑈 × 𝐶 ) = 𝑈 ) |
| 21 |
19 20
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ∅ ) → dom dom 𝐴 = 𝑈 ) |
| 22 |
21
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ∅ ) → ( ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 ) ) |
| 23 |
22
|
rabbidv |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ∅ ) → { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ dom dom 𝐴 ( 𝑝 𝐴 𝑥 ) = 𝑥 } = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 24 |
15 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ ∅ ) → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 25 |
14 24
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |