| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpgaval.s |
⊢ 𝑈 = ( Base ‘ 𝐺 ) |
| 2 |
|
fxpgaval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 3 |
|
isfxp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
| 4 |
1 2
|
fxpgaval |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐶 FixPts 𝐴 ) ↔ 𝑋 ∈ { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 𝑋 ) ) |
| 7 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
| 8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |
| 10 |
9
|
elrab |
⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ↔ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |
| 11 |
5 10
|
bitrdi |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐶 FixPts 𝐴 ) ↔ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) ) |
| 12 |
3 11
|
mpbirand |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐶 FixPts 𝐴 ) ↔ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |