| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpgaval.s |
⊢ 𝑈 = ( Base ‘ 𝐺 ) |
| 2 |
|
fxpgaval.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) ) |
| 3 |
|
fxpgaeq.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 FixPts 𝐴 ) ) |
| 4 |
|
fxpgaeq.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝑈 ) |
| 5 |
|
oveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 𝐴 𝑋 ) = ( 𝑃 𝐴 𝑋 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 𝐴 𝑋 ) = 𝑋 ↔ ( 𝑃 𝐴 𝑋 ) = 𝑋 ) ) |
| 7 |
1 2
|
fxpgaval |
⊢ ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 8 |
3 7
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 𝑋 ) ) |
| 10 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |
| 13 |
12
|
elrab |
⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝐶 ∣ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ↔ ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |
| 14 |
8 13
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 ∧ ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) ) |
| 15 |
14
|
simprd |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) |
| 16 |
6 15 4
|
rspcdva |
⊢ ( 𝜑 → ( 𝑃 𝐴 𝑋 ) = 𝑋 ) |