Metamath Proof Explorer


Theorem fxpgaeq

Description: A fixed point X is invariant under group action A (Contributed by Thierry Arnoux, 18-Nov-2025)

Ref Expression
Hypotheses fxpgaval.s 𝑈 = ( Base ‘ 𝐺 )
fxpgaval.a ( 𝜑𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) )
fxpgaeq.x ( 𝜑𝑋 ∈ ( 𝐶 FixPts 𝐴 ) )
fxpgaeq.p ( 𝜑𝑃𝑈 )
Assertion fxpgaeq ( 𝜑 → ( 𝑃 𝐴 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 fxpgaval.s 𝑈 = ( Base ‘ 𝐺 )
2 fxpgaval.a ( 𝜑𝐴 ∈ ( 𝐺 GrpAct 𝐶 ) )
3 fxpgaeq.x ( 𝜑𝑋 ∈ ( 𝐶 FixPts 𝐴 ) )
4 fxpgaeq.p ( 𝜑𝑃𝑈 )
5 oveq1 ( 𝑝 = 𝑃 → ( 𝑝 𝐴 𝑋 ) = ( 𝑃 𝐴 𝑋 ) )
6 5 eqeq1d ( 𝑝 = 𝑃 → ( ( 𝑝 𝐴 𝑋 ) = 𝑋 ↔ ( 𝑃 𝐴 𝑋 ) = 𝑋 ) )
7 1 2 fxpgaval ( 𝜑 → ( 𝐶 FixPts 𝐴 ) = { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
8 3 7 eleqtrd ( 𝜑𝑋 ∈ { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } )
9 oveq2 ( 𝑥 = 𝑋 → ( 𝑝 𝐴 𝑥 ) = ( 𝑝 𝐴 𝑋 ) )
10 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
11 9 10 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ( 𝑝 𝐴 𝑋 ) = 𝑋 ) )
12 11 ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 ↔ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) )
13 12 elrab ( 𝑋 ∈ { 𝑥𝐶 ∣ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑥 ) = 𝑥 } ↔ ( 𝑋𝐶 ∧ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) )
14 8 13 sylib ( 𝜑 → ( 𝑋𝐶 ∧ ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 ) )
15 14 simprd ( 𝜑 → ∀ 𝑝𝑈 ( 𝑝 𝐴 𝑋 ) = 𝑋 )
16 6 15 4 rspcdva ( 𝜑 → ( 𝑃 𝐴 𝑋 ) = 𝑋 )