| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fxpgaval.s |
|- U = ( Base ` G ) |
| 2 |
|
fxpgaval.a |
|- ( ph -> A e. ( G GrpAct C ) ) |
| 3 |
|
fxpgaeq.x |
|- ( ph -> X e. ( C FixPts A ) ) |
| 4 |
|
fxpgaeq.p |
|- ( ph -> P e. U ) |
| 5 |
|
oveq1 |
|- ( p = P -> ( p A X ) = ( P A X ) ) |
| 6 |
5
|
eqeq1d |
|- ( p = P -> ( ( p A X ) = X <-> ( P A X ) = X ) ) |
| 7 |
1 2
|
fxpgaval |
|- ( ph -> ( C FixPts A ) = { x e. C | A. p e. U ( p A x ) = x } ) |
| 8 |
3 7
|
eleqtrd |
|- ( ph -> X e. { x e. C | A. p e. U ( p A x ) = x } ) |
| 9 |
|
oveq2 |
|- ( x = X -> ( p A x ) = ( p A X ) ) |
| 10 |
|
id |
|- ( x = X -> x = X ) |
| 11 |
9 10
|
eqeq12d |
|- ( x = X -> ( ( p A x ) = x <-> ( p A X ) = X ) ) |
| 12 |
11
|
ralbidv |
|- ( x = X -> ( A. p e. U ( p A x ) = x <-> A. p e. U ( p A X ) = X ) ) |
| 13 |
12
|
elrab |
|- ( X e. { x e. C | A. p e. U ( p A x ) = x } <-> ( X e. C /\ A. p e. U ( p A X ) = X ) ) |
| 14 |
8 13
|
sylib |
|- ( ph -> ( X e. C /\ A. p e. U ( p A X ) = X ) ) |
| 15 |
14
|
simprd |
|- ( ph -> A. p e. U ( p A X ) = X ) |
| 16 |
6 15 4
|
rspcdva |
|- ( ph -> ( P A X ) = X ) |