| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cntrval2.1 |
|- B = ( Base ` M ) |
| 2 |
|
cntrval2.2 |
|- .+ = ( +g ` M ) |
| 3 |
|
cntrval2.3 |
|- .- = ( -g ` M ) |
| 4 |
|
cntrval2.4 |
|- .(+) = ( x e. B , y e. B |-> ( ( x .+ y ) .- x ) ) |
| 5 |
|
id |
|- ( M e. Grp -> M e. Grp ) |
| 6 |
1
|
fvexi |
|- B e. _V |
| 7 |
6
|
a1i |
|- ( M e. Grp -> B e. _V ) |
| 8 |
5
|
adantr |
|- ( ( M e. Grp /\ z e. ( B X. B ) ) -> M e. Grp ) |
| 9 |
|
xp1st |
|- ( z e. ( B X. B ) -> ( 1st ` z ) e. B ) |
| 10 |
9
|
adantl |
|- ( ( M e. Grp /\ z e. ( B X. B ) ) -> ( 1st ` z ) e. B ) |
| 11 |
|
xp2nd |
|- ( z e. ( B X. B ) -> ( 2nd ` z ) e. B ) |
| 12 |
11
|
adantl |
|- ( ( M e. Grp /\ z e. ( B X. B ) ) -> ( 2nd ` z ) e. B ) |
| 13 |
1 2 8 10 12
|
grpcld |
|- ( ( M e. Grp /\ z e. ( B X. B ) ) -> ( ( 1st ` z ) .+ ( 2nd ` z ) ) e. B ) |
| 14 |
1 3 8 13 10
|
grpsubcld |
|- ( ( M e. Grp /\ z e. ( B X. B ) ) -> ( ( ( 1st ` z ) .+ ( 2nd ` z ) ) .- ( 1st ` z ) ) e. B ) |
| 15 |
|
vex |
|- x e. _V |
| 16 |
|
vex |
|- y e. _V |
| 17 |
15 16
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 18 |
15 16
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 19 |
17 18
|
oveq12d |
|- ( z = <. x , y >. -> ( ( 1st ` z ) .+ ( 2nd ` z ) ) = ( x .+ y ) ) |
| 20 |
19 17
|
oveq12d |
|- ( z = <. x , y >. -> ( ( ( 1st ` z ) .+ ( 2nd ` z ) ) .- ( 1st ` z ) ) = ( ( x .+ y ) .- x ) ) |
| 21 |
20
|
mpompt |
|- ( z e. ( B X. B ) |-> ( ( ( 1st ` z ) .+ ( 2nd ` z ) ) .- ( 1st ` z ) ) ) = ( x e. B , y e. B |-> ( ( x .+ y ) .- x ) ) |
| 22 |
4 21
|
eqtr4i |
|- .(+) = ( z e. ( B X. B ) |-> ( ( ( 1st ` z ) .+ ( 2nd ` z ) ) .- ( 1st ` z ) ) ) |
| 23 |
14 22
|
fmptd |
|- ( M e. Grp -> .(+) : ( B X. B ) --> B ) |
| 24 |
4
|
a1i |
|- ( ( M e. Grp /\ z e. B ) -> .(+) = ( x e. B , y e. B |-> ( ( x .+ y ) .- x ) ) ) |
| 25 |
|
simplr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> x = ( 0g ` M ) ) |
| 26 |
|
simpr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> y = z ) |
| 27 |
25 26
|
oveq12d |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> ( x .+ y ) = ( ( 0g ` M ) .+ z ) ) |
| 28 |
27 25
|
oveq12d |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> ( ( x .+ y ) .- x ) = ( ( ( 0g ` M ) .+ z ) .- ( 0g ` M ) ) ) |
| 29 |
5
|
ad3antrrr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> M e. Grp ) |
| 30 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 31 |
1 30
|
grpidcl |
|- ( M e. Grp -> ( 0g ` M ) e. B ) |
| 32 |
31
|
ad3antrrr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> ( 0g ` M ) e. B ) |
| 33 |
|
simpllr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> z e. B ) |
| 34 |
1 2 29 32 33
|
grpcld |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> ( ( 0g ` M ) .+ z ) e. B ) |
| 35 |
1 30 3
|
grpsubid1 |
|- ( ( M e. Grp /\ ( ( 0g ` M ) .+ z ) e. B ) -> ( ( ( 0g ` M ) .+ z ) .- ( 0g ` M ) ) = ( ( 0g ` M ) .+ z ) ) |
| 36 |
29 34 35
|
syl2anc |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> ( ( ( 0g ` M ) .+ z ) .- ( 0g ` M ) ) = ( ( 0g ` M ) .+ z ) ) |
| 37 |
1 2 30 29 33
|
grplidd |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> ( ( 0g ` M ) .+ z ) = z ) |
| 38 |
28 36 37
|
3eqtrd |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ x = ( 0g ` M ) ) /\ y = z ) -> ( ( x .+ y ) .- x ) = z ) |
| 39 |
38
|
anasss |
|- ( ( ( M e. Grp /\ z e. B ) /\ ( x = ( 0g ` M ) /\ y = z ) ) -> ( ( x .+ y ) .- x ) = z ) |
| 40 |
31
|
adantr |
|- ( ( M e. Grp /\ z e. B ) -> ( 0g ` M ) e. B ) |
| 41 |
|
simpr |
|- ( ( M e. Grp /\ z e. B ) -> z e. B ) |
| 42 |
24 39 40 41 41
|
ovmpod |
|- ( ( M e. Grp /\ z e. B ) -> ( ( 0g ` M ) .(+) z ) = z ) |
| 43 |
5
|
ad3antrrr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> M e. Grp ) |
| 44 |
|
simplr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> u e. B ) |
| 45 |
|
simpr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> v e. B ) |
| 46 |
|
simpllr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> z e. B ) |
| 47 |
1 2 43 44 45 46
|
grpassd |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( u .+ v ) .+ z ) = ( u .+ ( v .+ z ) ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( ( u .+ v ) .+ z ) .- ( u .+ v ) ) = ( ( u .+ ( v .+ z ) ) .- ( u .+ v ) ) ) |
| 49 |
1 2 43 45 46
|
grpcld |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( v .+ z ) e. B ) |
| 50 |
1 2 43 44 49
|
grpcld |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( u .+ ( v .+ z ) ) e. B ) |
| 51 |
1 2 3
|
grpsubsub4 |
|- ( ( M e. Grp /\ ( ( u .+ ( v .+ z ) ) e. B /\ v e. B /\ u e. B ) ) -> ( ( ( u .+ ( v .+ z ) ) .- v ) .- u ) = ( ( u .+ ( v .+ z ) ) .- ( u .+ v ) ) ) |
| 52 |
43 50 45 44 51
|
syl13anc |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( ( u .+ ( v .+ z ) ) .- v ) .- u ) = ( ( u .+ ( v .+ z ) ) .- ( u .+ v ) ) ) |
| 53 |
1 2 3
|
grpaddsubass |
|- ( ( M e. Grp /\ ( u e. B /\ ( v .+ z ) e. B /\ v e. B ) ) -> ( ( u .+ ( v .+ z ) ) .- v ) = ( u .+ ( ( v .+ z ) .- v ) ) ) |
| 54 |
43 44 49 45 53
|
syl13anc |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( u .+ ( v .+ z ) ) .- v ) = ( u .+ ( ( v .+ z ) .- v ) ) ) |
| 55 |
54
|
oveq1d |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( ( u .+ ( v .+ z ) ) .- v ) .- u ) = ( ( u .+ ( ( v .+ z ) .- v ) ) .- u ) ) |
| 56 |
48 52 55
|
3eqtr2d |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( ( u .+ v ) .+ z ) .- ( u .+ v ) ) = ( ( u .+ ( ( v .+ z ) .- v ) ) .- u ) ) |
| 57 |
4
|
a1i |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> .(+) = ( x e. B , y e. B |-> ( ( x .+ y ) .- x ) ) ) |
| 58 |
|
simprl |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = ( u .+ v ) /\ y = z ) ) -> x = ( u .+ v ) ) |
| 59 |
|
simprr |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = ( u .+ v ) /\ y = z ) ) -> y = z ) |
| 60 |
58 59
|
oveq12d |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = ( u .+ v ) /\ y = z ) ) -> ( x .+ y ) = ( ( u .+ v ) .+ z ) ) |
| 61 |
60 58
|
oveq12d |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = ( u .+ v ) /\ y = z ) ) -> ( ( x .+ y ) .- x ) = ( ( ( u .+ v ) .+ z ) .- ( u .+ v ) ) ) |
| 62 |
1 2 43 44 45
|
grpcld |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( u .+ v ) e. B ) |
| 63 |
|
ovexd |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( ( u .+ v ) .+ z ) .- ( u .+ v ) ) e. _V ) |
| 64 |
57 61 62 46 63
|
ovmpod |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( u .+ v ) .(+) z ) = ( ( ( u .+ v ) .+ z ) .- ( u .+ v ) ) ) |
| 65 |
|
simprl |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = u /\ y = ( v .(+) z ) ) ) -> x = u ) |
| 66 |
|
simprr |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = u /\ y = ( v .(+) z ) ) ) -> y = ( v .(+) z ) ) |
| 67 |
|
simprl |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = v /\ y = z ) ) -> x = v ) |
| 68 |
|
simprr |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = v /\ y = z ) ) -> y = z ) |
| 69 |
67 68
|
oveq12d |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = v /\ y = z ) ) -> ( x .+ y ) = ( v .+ z ) ) |
| 70 |
69 67
|
oveq12d |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = v /\ y = z ) ) -> ( ( x .+ y ) .- x ) = ( ( v .+ z ) .- v ) ) |
| 71 |
|
ovexd |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( v .+ z ) .- v ) e. _V ) |
| 72 |
57 70 45 46 71
|
ovmpod |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( v .(+) z ) = ( ( v .+ z ) .- v ) ) |
| 73 |
72
|
adantr |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = u /\ y = ( v .(+) z ) ) ) -> ( v .(+) z ) = ( ( v .+ z ) .- v ) ) |
| 74 |
66 73
|
eqtrd |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = u /\ y = ( v .(+) z ) ) ) -> y = ( ( v .+ z ) .- v ) ) |
| 75 |
65 74
|
oveq12d |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = u /\ y = ( v .(+) z ) ) ) -> ( x .+ y ) = ( u .+ ( ( v .+ z ) .- v ) ) ) |
| 76 |
75 65
|
oveq12d |
|- ( ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) /\ ( x = u /\ y = ( v .(+) z ) ) ) -> ( ( x .+ y ) .- x ) = ( ( u .+ ( ( v .+ z ) .- v ) ) .- u ) ) |
| 77 |
23
|
ad3antrrr |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> .(+) : ( B X. B ) --> B ) |
| 78 |
77 45 46
|
fovcdmd |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( v .(+) z ) e. B ) |
| 79 |
|
ovexd |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( u .+ ( ( v .+ z ) .- v ) ) .- u ) e. _V ) |
| 80 |
57 76 44 78 79
|
ovmpod |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( u .(+) ( v .(+) z ) ) = ( ( u .+ ( ( v .+ z ) .- v ) ) .- u ) ) |
| 81 |
56 64 80
|
3eqtr4d |
|- ( ( ( ( M e. Grp /\ z e. B ) /\ u e. B ) /\ v e. B ) -> ( ( u .+ v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) |
| 82 |
81
|
anasss |
|- ( ( ( M e. Grp /\ z e. B ) /\ ( u e. B /\ v e. B ) ) -> ( ( u .+ v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) |
| 83 |
82
|
ralrimivva |
|- ( ( M e. Grp /\ z e. B ) -> A. u e. B A. v e. B ( ( u .+ v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) |
| 84 |
42 83
|
jca |
|- ( ( M e. Grp /\ z e. B ) -> ( ( ( 0g ` M ) .(+) z ) = z /\ A. u e. B A. v e. B ( ( u .+ v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) ) |
| 85 |
84
|
ralrimiva |
|- ( M e. Grp -> A. z e. B ( ( ( 0g ` M ) .(+) z ) = z /\ A. u e. B A. v e. B ( ( u .+ v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) ) |
| 86 |
1 2 30
|
isga |
|- ( .(+) e. ( M GrpAct B ) <-> ( ( M e. Grp /\ B e. _V ) /\ ( .(+) : ( B X. B ) --> B /\ A. z e. B ( ( ( 0g ` M ) .(+) z ) = z /\ A. u e. B A. v e. B ( ( u .+ v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) ) ) ) |
| 87 |
5 7 23 85 86
|
syl22anbrc |
|- ( M e. Grp -> .(+) e. ( M GrpAct B ) ) |