Metamath Proof Explorer


Theorem grpsubcld

Description: Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses grpsubcld.b
|- B = ( Base ` G )
grpsubcld.m
|- .- = ( -g ` G )
grpsubcld.g
|- ( ph -> G e. Grp )
grpsubcld.x
|- ( ph -> X e. B )
grpsubcld.y
|- ( ph -> Y e. B )
Assertion grpsubcld
|- ( ph -> ( X .- Y ) e. B )

Proof

Step Hyp Ref Expression
1 grpsubcld.b
 |-  B = ( Base ` G )
2 grpsubcld.m
 |-  .- = ( -g ` G )
3 grpsubcld.g
 |-  ( ph -> G e. Grp )
4 grpsubcld.x
 |-  ( ph -> X e. B )
5 grpsubcld.y
 |-  ( ph -> Y e. B )
6 1 2 grpsubcl
 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B )
7 3 4 5 6 syl3anc
 |-  ( ph -> ( X .- Y ) e. B )