Description: Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcld.b | |- B = ( Base ` G ) |
|
| grpsubcld.m | |- .- = ( -g ` G ) |
||
| grpsubcld.g | |- ( ph -> G e. Grp ) |
||
| grpsubcld.x | |- ( ph -> X e. B ) |
||
| grpsubcld.y | |- ( ph -> Y e. B ) |
||
| Assertion | grpsubcld | |- ( ph -> ( X .- Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcld.b | |- B = ( Base ` G ) |
|
| 2 | grpsubcld.m | |- .- = ( -g ` G ) |
|
| 3 | grpsubcld.g | |- ( ph -> G e. Grp ) |
|
| 4 | grpsubcld.x | |- ( ph -> X e. B ) |
|
| 5 | grpsubcld.y | |- ( ph -> Y e. B ) |
|
| 6 | 1 2 | grpsubcl | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ph -> ( X .- Y ) e. B ) |