Description: Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpsubcld.b | |- B = ( Base ` G ) |
|
grpsubcld.m | |- .- = ( -g ` G ) |
||
grpsubcld.g | |- ( ph -> G e. Grp ) |
||
grpsubcld.x | |- ( ph -> X e. B ) |
||
grpsubcld.y | |- ( ph -> Y e. B ) |
||
Assertion | grpsubcld | |- ( ph -> ( X .- Y ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcld.b | |- B = ( Base ` G ) |
|
2 | grpsubcld.m | |- .- = ( -g ` G ) |
|
3 | grpsubcld.g | |- ( ph -> G e. Grp ) |
|
4 | grpsubcld.x | |- ( ph -> X e. B ) |
|
5 | grpsubcld.y | |- ( ph -> Y e. B ) |
|
6 | 1 2 | grpsubcl | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B ) |
7 | 3 4 5 6 | syl3anc | |- ( ph -> ( X .- Y ) e. B ) |