Metamath Proof Explorer


Theorem grpsubcld

Description: Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses grpsubcld.b 𝐵 = ( Base ‘ 𝐺 )
grpsubcld.m = ( -g𝐺 )
grpsubcld.g ( 𝜑𝐺 ∈ Grp )
grpsubcld.x ( 𝜑𝑋𝐵 )
grpsubcld.y ( 𝜑𝑌𝐵 )
Assertion grpsubcld ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 grpsubcld.b 𝐵 = ( Base ‘ 𝐺 )
2 grpsubcld.m = ( -g𝐺 )
3 grpsubcld.g ( 𝜑𝐺 ∈ Grp )
4 grpsubcld.x ( 𝜑𝑋𝐵 )
5 grpsubcld.y ( 𝜑𝑌𝐵 )
6 1 2 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) ∈ 𝐵 )
7 3 4 5 6 syl3anc ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝐵 )